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INTRODUCTION 
 Wavelets are a mathematical tool for hierarchically decomposing functions in the frequency domain 
by preserving the spatial domain. Since their introduction [1], wavelets have found more and more 
applications in computer graphics, such as image compression, digital image processing, and feature 
detection [2-3]. Using wavelets, an image pyramid can be produced which represents the entropy levels 
for each frequency. In this case study, we demonstrate how this property can be exploited to segment 
objects in noisy images based on their frequency response in various frequency bands, separating them 
from the background and from other objects. We compare our noise-robust Haar wavelet-based 
technique to other standard image processing methods. 
 
FEATURES OF THE SEGMENTATION TOOLBOX  
 For this case study, a toolbox has been developed to experiment with various segmentation 
techniques. The toolbox allows the user to combine traditional thresholding- or contour-based 
segmentation algorithms with a frequency-based method. The interface of the segmentation toolbox is 
shown in figure 1. It was implemented using QT, a cross-platform C++ graphical user interface (GUI) 
application framework [4]. 
 The toolbox contains many digital image enhancement functionalities, including brightness and 
contrast adjustment, histogram expansion and equalization, Haar wavelet decomposition, filtering, 
morphological operations, etc. To facilitate the comparison of a modified image with the original one, 
the original image is shown in the upper-right corner. The histogram of an image provides its gray level 
distribution information, which is important for the parameter selection in several image enhancement 
operations. Therefore the histogram of an image under processing is displayed under the original image. 
The rest of the user interface contains buttons and sliders to choose from a variety of histogram, filtering 
and wavelet decomposition functions. 
 The input image can be transformed into several levels of resolution using 2-D Haar wavelets [2-3]. 
A low-pass filter transformation gives three sets of images at different resolution levels. A high-pass 
filter provides the detail information. If we choose the number of recursive transformation steps to be 3, 
then each set consists of three images as shown in figure 1. The horizontal sub images respond to 
different horizontal high frequencies in the image, whereas the vertical and diagonal sub images respond 
to different vertical and diagonal high frequencies in the image respectively. The low frequency part is 
displayed in the upper-left corner. This means that the image has been decomposed into three levels of 
directional derivatives, or three frequency bands in a preferred direction. From each decomposition step, 
the lowest frequency detail image (either horizontal, vertical, or diagonal) is chosen, scaled, and then 
combined with the other images of the set into a single image. The different frequencies are color-coded, 
using a particular primary color for each frequency level. In our example, the combination process 



works as follows: enlarge level 2 and 3 images to the size of level 1 images; combine the horizontal, 
vertical, and diagonal images separately, and apply one of the three additive primary colors (red, green, 
blue) to each frequency. This means that if an image feature is present in one frequency range, it will 
take on a particular color. If it is present in more than one frequency band, the resulting color is a 
combination of the three input colors. If a feature is visible in all three frequency bands, the object 
appears as white. It should be noted that this visual color comparison works well for three frequency 
bands mapped to three primary colors. If more than three frequency bands are analyzed, the color 
distinction becomes more difficult. In this case, and also in the case of three colors, an additional 
condition can be set so that only those features that appear in all frequency bands are visible (or white), 
while all other features are eliminated (black). Large features in noisy images are usually visible in all 
frequency bands and therefore displayed, while small features indistinguishable from noise are usually 
eliminated. This way, the desired features in a noisy image can be extracted, while noise is eliminated. 
The method works well in cases where standard threshold- or gradient-based edge detection algorithms 
would fail, because the noise would mistakenly be misinterpreted as a contour if it exceeds a certain 
absolute or gradient threshold. The sliders High, Medium, and Low, are used to set thresholds for each 
decomposition level, i.e., for each frequency band. Intensities below the threshold will be set to zero in 
the combination process, therefore gray levels less than the threshold will not contribute to the detected 
features in the combined image. This means that each frequency band can be selected separately, and if 
a feature is not present in one frequency band, it can be completely eliminated. By setting an appropriate 
threshold for each frequency band, we can effectively eliminate high frequency noise in an image and 
highlight dominant features, even if the feature itself is noisy. 
 
 

 
 

Figure 1 Interface of the segmentation toolbox. 



 
 
RESULTS AND DISCUSSIONS 

Figure 2 shows one of the segmentation results for a 
test image similar to the one shown in the GUI (figure 1). 
For comparison, results from Sobel and Laplacian filters are 
also shown in figure 2. The input data ranges from 0 to 255. 
The threshold setting for figure 2d is [0 0 0], which are the 
threshold values for High, Medium, and Low, respectively. 
It can be seen that all frequency components, from high to 
low, are present in the final image. The threshold setting for 
figure 2e is [0 0 10]. Now we can see a significant 
difference between figure 2a and figure 2f: the noise has 
been greatly reduced in this image, while the outlines of the 
features remain relatively unchanged. The threshold setting 
for figure 2f is [0 10 30].  In this image, the noise is totally 
eliminated, and only the desired feature contours that have a 
strong presence in all three frequency bands are visible. 

Compared to low frequency components (the objects 
that are to be segmented in figure 2), high frequency 
components (visible as noise in figure 2) naturally have 
lower entropies at higher wavelet transformation levels, i.e., 
in the lower frequency bands. It is this property that we use 

to separate noise from object features in an image. Since 
noise typically has lower entropy in the low frequency 
bands, the noise can be easily eliminated by setting a 
threshold that is larger than the noise level. As we discussed 
before, entropy levels less than the threshold are set to zero, 
and do not contribute to the combined image. However, the 
effectiveness of the above method depends on the fact that 
large objects, i.e., low frequency components, even if the 
area in the image where they occur appears to be noisy, 
have relatively constant entropies at all wavelet 
transformation levels. 
 It can be seen from the images in figure 2 that though 
the high frequency noise can be completely eliminated, the 
useful features, i.e., the contours of the segmented objects, 
are sometimes also affected, and the algorithm does not 
necessarily produce closed contours. A closed contour 
would be essential for a flood-fill algorithm that separates 
the object from the rest of the image (segmentation). This is 
an issue that needs to be studied further. One way to solve 
the problem is to use morphological filters to close the 
discontinuous contours. 
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 Figure 2 a) original image, b) Sobel filter result, c) Laplacian filter result, d)-f) combined images from 

different settings of thresholds [high medium low]; d) [0 0 0], e) [0 0 10], f) [0 10 30]. 
 
 
CONCLUSION 

We investigated a new way of applying wavelets to 
digital image processing, and demonstrate that high 

frequency noise can be successfully removed without 
affecting contour detection by selectively combining the 
various frequency bands of wavelet-transformed images. 



The reliability of current contour-detection methods for 
image segmentation (e.g., Sobel, Laplace) can be improved 
by combining it in a weighted fashion with our wavelet-
based decomposition and selective recombination technique. 
Using a higher weight on the wavelet-based method makes 
the segmentation more robust against interference from 
noise. 
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