
U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

1 A Novel Method for Visualization of Entire Coronary Arterial Tree
2

3 THOMAS WISCHGOLL,1 JOERG MEYER,2 BENJAMIN KAIMOVITZ,3 YORAM LANIR,3 and GHASSAN S. KASSAB
4,5,6

4 1Department of Computer Science and Engineering, Wright State University, Dayton, OH, USA; 2Department of Biomedical
5 Engineering, University of California, Irvine, CA, USA; 3Department of Biomedical Engineering, Israel Institute of Technology,
6 Haifa, Israel; 4Department of Biomedical Engineering, Indiana-Purdue University, Indianapolis, IN 46202, USA; 5Department
7 of Surgery, Indiana-Purdue University, Indianapolis, IN 46202, USA; and 6Department of Cellular and Integrative Physiology,
8 Indiana-Purdue University, Indianapolis, IN 46202, USA

9 (Received 6 April 2006; accepted 1 February 2007)
10

11 Abstract—The complexity of the coronary circulation espe-
12 cially in the deep layers largely evades experimental investiga-
13 tions. Hence, virtual/computational models depicting
14 structure-function relation of the entire coronary vasculature
15 including the deep layer are imperative. In order to interpret
16 such anatomically based models, fast and efficient visualiza-
17 tion algorithms are essential. The complexity of such models,
18 which include vessels from the large proximal coronary arteries
19 and veins down to the capillary level (3 orders of magnitude
20 difference in diameter), is a challenging visualization problem
21 since the resulting geometrical representation consists of
22 millions of vessel segments. In this study, a novel method for
23 rendering the entire porcine coronary arterial tree down to the
24 first segments of capillaries interactively is described which
25 employs geometry reduction and occlusion culling techniques.
26 Due to the tree-shaped nature of the vasculature, these
27 techniques exploit the geometrical topology of the object to
28 achieve a faster rendering speed while still handling the full
29 complexity of the data. We found a significant increase in
30 performance combined with a more accurate, gap-less repre-
31 sentation of the vessel segments resulting in a more interactive
32 visualization and analysis tool for the entire coronary arterial
33 tree. The proposed techniques can also be applied to similar
34 data structures, such as neuronal trees, airway structures, bile
35 ducts, and other tree-like structures. The utility and future
36 applications of the proposed algorithms are explored.

37 Keywords—Coronary vasculature, Geometry reduction,

38 Large-scale visualization, Occlusion culling, Tree-shaped

39 data set.
40

4142 INTRODUCTION

43 To understand such a complex system as the coro-

44 nary circulation, it is essential to employ anatomically

45 based mathematical models that integrate the physical

46 and biological interactions. It is important for these

4848virtual models to include high detail at the microvas-

49culature (including capillary vessels) as well as on a

50macroscopic scale (epicardial vessels) in order to

51integrate the entire coronary vasculature. A visual

52representation of the anatomical model should include

53the various parameters of the model. For example,

54diameters and lengths and their relative changes

55throughout the vasculature should be visualized for

56every vessel segment. The visual representation should

57enable a user to better analyze the parameters of the

58data set compared to tabular data. In addition, further

59information should be accessible to the user by

60selecting a vessel segment and displaying information,

61such as vessel volume and surface area. The system

62should also allow the user to edit the individual vessel

63segments and change their radii or location. Obvi-

64ously, representing the entire geometry of the vascu-

65lature results in a huge set of geometrical data. Ideally,

66the visualization should be interactive; i.e., the ren-

67dering algorithm has to output at least several frames

68per second (fps).

69Rendering such a large-scale model is quite chal-

70lenging for currently available computing hardware

71since commodity graphics cards are presently not able

72to display this amount of information interactively.

73For the complete coronary arterial model, a total of

746 giga-byte (GB) of geometric information is needed

75to be transferred from main memory to the graphics

76card, which presents a limit for interactive rendering.

77Furthermore, most desktop computers are not capable

78of handling this amount of data due to insufficient

79main memory. Hence, the size of such a large-scale

80anatomical model is prohibitive for rendering on

81desktop computers without employing out-of-core

82techniques.

83The objective of this study is to develop a visuali-

84zation method for a view-dependent, interactive deci-

85mation of massive tree-shaped data sets. The proposed

Address correspondence to Ghassan S. Kassab, Department of

Biomedical Engineering, Indiana-Purdue University, Indianapolis,

IN, 46202, USA. Electronic mail: gkassab@iupui.edu

Annals of Biomedical Engineering (� 2007)

DOI: 10.1007/s10439-007-9278-x

� 2007 Biomedical Engineering Society

Journal : ABME MS Code : 10439 PIPS No. : 9278 h TYPESET h DISK h LE h CP Dispatch : 20-2-2007 Pages : 174 4

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

86 approach will combine a spatial data structure and

87 occlusion queries to reduce the number of triangles

88 necessary to render tree-shaped data sets that exceed

89 the memory present in the computer system. The

90 topology of tree-shaped data sets is exploited in order

91 to reduce the complexity of the triangle mesh coher-

92 ently. The proposed software system makes use of

93 recent improvements in graphics hardware and

94 employs hardware occlusion queries that allow a faster

95 and more precise occlusion test as compared to soft-

96 ware-based approaches. The techniques described in

97 this article can be easily applied to data extracted from

98 any tree-like structures.

99 METHODS

100 Anatomically Based Model

101 Recently, Kaimovitz et al.15 developed a three-

102 dimensional (3-D) geometric model of the entire cor-

103 onary arterial tree (right coronary artery, RCA; left

104 anterior descending artery, LAD; and left circumflex,

105 LCx arterial tree) based on Kassab et al.’s coronary

106 morphometric data base.16 The model spans the entire

107 coronary arterial tree down to the capillary vessels in a

108 prolate spheroid model of the heart and encompasses

109 about 10 million segments. The 3-D tree structure was

110 reconstructed initially in rectangular slab geometry by

111 means of global geometrical optimization using a

112 parallel Simulated Annealing (SA) algorithm. The SA

113 optimization was subject to a global boundary avoid-

114 ance constraint and local constraints at bifurcations

115 prescribed by previously measured data on branching

116 asymmetry in the coronary arterial tree.38 Subse-

117 quently, the reconstructed tree was mapped onto the

118 prolate spheroidal geometry of the heart. The trans-

119 formation was made through least squares minimiza-

120 tion of the deformation in segment lengths as well as

121 their angular characteristics.

122 Rendering of Massive Tree-Like Structures

123 In the previous publication.15 vessel segments were

124 visualized using standard cylinders. Since consecutive

125 vessel segments do not necessarily form 180 degree

126 angles, these result in visible gaps at the point of

127 transition. To avoid these gaps, the proposed system

128 represents vessel segments as conic cylinders with

129 rotated ends, which are not necessarily orthogonal to

130 the cylindrical axis. In this way, a smooth transition

131 from one segment to the daughter segment(s) can be

132 achieved, thus avoiding any gaps. The individual conic

133 cylinders are pieced together using triangles that are

134 fitted in such a way that an optimal, gap-less approx-

135 imation is achieved. This results in an accurate visual

136representation of the entire vascular structure as

137defined by the data set.

138Since several triangles are needed to represent a

139single conic cylinder, rendering a vascular structure

140which consists of 10 million vessel segments requires

141about 220 million triangles to achieve a sufficiently

142accurate approximation. This in return results in

143geometry data that amounts to several GB in size

144which exceeds the main memory of common desktop

145computers. In addition, transferring this amount of

146data to the graphics hardware and processing this

147information overwhelms both the bus system (usually

148advanced graphics port, AGP, or PCI Express) as well

149as the graphics hardware. Consequently, techniques

150are needed that allow the system to handle data sets

151that exceed the amount of main memory present in the

152computer as well as reduce the number of triangles to

153generate the visualization.

154Hence, the proposed software system deploys out-

155of-core techniques which store the entire geometry

156data on the hard drive only. During the rendering

157process, only parts of the data are transferred to the

158main memory. Once these parts are processed, the

159system automatically removes these parts and loads

160the next ones for further processing. In this way, the

161geometry data is loaded in a streaming fashion from

162the hard drive and then transferred to the graphics

163hardware for visualization.

164In addition, the proposed system reduces the number

165of triangles using view-dependent geometry reduction,

166backface-culling, and occlusion-based reduction. View-

167dependent geometry reduction automatically reduces

168the amount of detail that is used for representing the

169vessel segments based on the distance to the viewer.

170Hence, the vessel segments that appear far away are

171drawn with less detail (using a lower number of trian-

172gles per vessel segment) while the ones in the front are

173shown in full detail. Since usually only half of a conic

174cylinder is visible at a time, only the visible half needs to

175be processed in order to generate the visualization.

176Accordingly, the number of triangles can be reduced

177significantly by removing those triangles of a conic

178cylinder that face away from the viewer.

179Similarly, occlusion-based reduction removes those

180conic cylinders that represent vessel segments which

181are obstructed by several other vessel segments and

182therefore invisible from the current location of the

183viewer. Since these vessel segments are not visible, they

184can be eliminated without changing the visualization.

185This reduces the number of triangles that need to be

186transferred to the graphics hardware. Note that all

187these techniques for reducing the number of triangles

188are view-dependent; i.e., whenever the location of

189the viewer changes these need to be recomputed to

190ensure that only those triangles are removed that

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

191 minimally contribute to the current visualization. As a

192 consequence, all computations required need to be

193 implanted very efficiently. For example, better effi-

194 ciency can be achieved by grouping vessel segments

195 that are close together and then applying the geometry

196 reduction techniques to the entire group. This reduces

197 the computation effort for visibility tests significantly.

198 Grouping of vessel segments can be achieved by, for

199 example, sub-dividing the bounding box of the entire

200 vascular structure into equal sub-areas. A detailed

201 description, including implementation details, can be

202 found in the appendix.

203 RESULTS

204 Tree Rendering

205 Figure 1 shows the complete vascular model

206 including all three major branches. The left image

207 depicts an overview, while the right displays a close-up

208 view of the marked region. Even after zooming into the

209 model, there is still an enormous amount of detail

210 which underscores the complexity of the generated

211 model. The geometric model exceeds the main memory

212 of most desktop computers. In addition, the geometry

213 data results in slow performance due to the enormity

214 of information that needs to be processed to compute a

215 single projected image. Without applying out-of-core

216 methods, only one branch of the vasculature, for

217 example the LCx as depicted in Fig. 2 (a), can be

218 visualized since it is significantly smaller in size

219 (1.8 million vessel segments).

220 Geometry Reduction

221 The geometry reduction techniques applied to the

222 data significantly reduced the number of triangles. For

223example, Fig. 2(b) shows the results for the view-

224dependent geometry reduction where 20% less triangles

225were required for generating the image. Figure 3 shows

226an example of hardware occlusion queries applied to

227the LCx data set. A reduction of 56% was achieved.

228The vessel segments in those areas that were identified

229as occluded are colored in red and drawn at the lowest

230level of detail. As can be seen in the figure, only

231those parts that are far away from the observer and

232obstructed to a large extent by other vessel segments

233are displayed using a lower level of detail (red).

234Performance

235For performance testing, two different systems were

236used. The first one was a Pentium4 2.6 giga-Hertz

237(GHz) central processing unit (CPU) equipped with

2382 GB of main memory and an AGP version of an

239Nvidia GeForce fx5200 graphics card. The second one

240was equipped with two AMD64 Opteron 246 2.0 GHz

241processors and 1 GB of main memory. This system

242used the PCI Express version of an Nvidia Quadro FX

2434400.

244As one of the reference data sets, the LCx coronary

245artery data was visualized. For displaying the data

246set in full detail (considering all vessel segments at

247full resolution), the geometry consisted of 25 million

248triangles. On the first test system without any

249enhancements, the data set could be rendered at an

250average frame-rate of 0.5 fps. Figure 4(a) provides a

251comparison between the frame rates obtained for the

252full data set and for the instantly reduced data set using

253occlusion culling. The frame rates over time are

254depicted for three different rendering methods using

255the same data set, and are shown while navigating

256through the model. In full level-of-detail mode, the

FIGURE 1. Complete representation of the vasculature of a heart and close-up view depicting the large amount of detail in the
model.

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

257 graphics hardware could not be used to its full extent

258 when the first computer system was used. By enabling

259 occlusion culling combined with view dependent

260 geometry reduction, the number of triangles that need

261 to be displayed for each frame was trimmed down to

262 an average of 11 million triangles according to

263 Fig. 4(b). Consequently, the frame rate increased to an

264 average of 2.1 fps due to the reduced number of tri-

265 angles. Since the performance increased by a factor of

266 four while cutting the number of triangles in half only,

267 the saturation of the AGP bus and CPU of the test

268 system is improved resulting in more efficient usage of

269 the graphics hardware.

270 For the occlusion test, the number of sub-areas used

271 should not be too large since the more time is spent on

272 occlusion culling the less time is available for the actual

273 rendering of the image. In this case, a heuristically

274determined equidistant scheme of 10� 10� 10 sub-

275volumes was used for the performance tests. Due to the

276fact that the number of triangles that need to be ren-

277dered for each frame could be reduced to 11 million

278triangles, the utilization of the AGP bus is improved.

279As a result, the rendering system was able to render

280about 23.1 million triangles per second. Therefore, to

281achieve a significantly better rendering performance

282using the graphics hardware, we incur only a minor

283performance loss for conducting the occlusion tests.

284The performance of the backface culling imple-

285mented in the system was tested on the RCA data set

286(consists of 4.3 million vessel segments) which was

287represented by 77 million triangles. The data set was

288rendered on the system equipped with an Nvidia

289GeForce fx5200 graphics card as previously described

290and utilized the implemented out-of-core technique.

291Figure 5(a) shows the number of triangles used during

292rendering. The backface culling was done in a con-

293servative way where only about one third of the tri-

294angles were removed. In this way, only invisible

295triangles are removed. This is especially necessary

296when rendering vessel segments that are represented by

297a very low number of triangles. For example, for a

298vessel segment represented by eight triangles, six of

299these can be seen in the worst case. According to

300Fig. 5(a), about 50 million triangles were required for

301rendering after removing those triangles that face away

302from the view point. This then increased the rendering

303rate accordingly as can be seen in Fig 5(b). Originally,

FIGURE 3. Close up of the LCx branch rendered with hard-
ware occlusion culling enabled (56% reduction). Areas ren-
dered with reduced resolution are shown in red as marked by
arrows.

FIGURE 2. Rendering of the geometry of the left circumflex
coronary artery (LCx) data set at full resolution (a) and LCx
branch rendered with view-dependent geometry reduction
enabled (20% reduction) (b).

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

304 a rendering speed of an average of 0.23 fps was

305 achieved. After removing backfacing triangles, the

306 data set is rendered at 0.33 fps, a 39% improvement in

307performance. During rendering, the software system

308had a memory footprint of 1.6 GB mainly used for

309caching most of the data set.

Framerate with occlusion culling enabled/disabled

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

frame

s
pf=e

marf
re

p
e

mi t/1

no occlusion culling

hardware occlusion culling

Number of triangles per frame

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

frame

sel
g

nairt
f

o
re

b
m

u
n

no occlusion culling

hardware occlusion culling

(a)

(b)

FIGURE 4. Resulting frames per second (a) and number of triangles used (b) when displaying an overview rendering of the left
circumflex coronary artery (LCx) branch on a desktop PC equipped with an Nvidia GeForce fx5200 graphics card.

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

310 The out-of-core technique was tested using all three

311 branches of the coronary arterial tree model. The

312 geometry of this model is represented by 220 million

313 triangles to represent all 10 million vessel segments

314 resulting in 6 GB of geometry information. Rendering

315 was performed both on the system equipped with an

316 Nvidia GeForce fx5200 graphics card as well as an

317 Nvidia Quadro FX 4400. According to Fig. 6(a),

318 rendering a single frame of this data set on the first

319 system took about 3 min and 52 s. Using the second

320 system, rendering the full data set took only about 62 s

321 as can be seen in Fig. 6(b). Obviously, the implemented

322 visualization system benefits from the faster graphics

323 hardware and the 64bit architecture available in the

324test system. Due to the out-of-core visualization, the

325full model could be rendered using less than 64 MB of

326main memory as observed via the Windows task

327manager. As pointed out previously, the out-of-core

328approach exploiting standard memory mapping tech-

329niques benefits from the caching capabilities of the

330operating system especially well when the user zooms to

331a certain area so that the geometry required for ren-

332dering this part fits into main memory. Figure 7 shows

333the performance of the rendering for such a case. An

334average of 1.9 fps was achieved. The system was able to

335render the data at more than two fps. Only in those

336cases where it is required to load the geometry from a

337sub-area that was not displayed before, the system’s

Number of triangles with backface culling

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

frame

sel
g

nairt f
o re

b
m

u
n

enabled

disabled

Framerate with backface culling

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

4.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

frame

etare
marf=e

marf re
p e

m it/1

enabled

disabled

(a)

(b)

FIGURE 5. Number of triangles used (a) and frames per second (b) when rendering an overview of the right coronary artery (RCA)
branch on a desktop PC equipped with an Nvidia GeForce fx5200 graphics card with and without backface culling.

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

338 performance dropped. Overall, the system was capable

339 of rendering even huge data sets as can be seen from

340 these examples and allows visualization at respectable

341 frame rates even with small main memory computers.

342 DISCUSSIONS

343 This study provides a visualization method for a

344 quantitative anatomical model of tree structures (such

345 as coronary arterial trees) that can be used, for instance,

346 to model the temporal and spatial distribution of blood

347 flow in the heart. In this study, the described simulated

348 data set was visualized. It is possible, however, to use

349the system for other types of data sets, such as microCT

350scanned specimens20,26 or data retrieved by an imaging

351cryomicrotome.32 The visualization features of the

352software will serve as an educational tool as well as for

353data interpretation. It is expected that the software will

354become a valuable tool for cardiologists, physiologists

355and students. The details are discussed below.

356Visualization

357When rendering such a large model, there are three

358factors that can limit performance. First, the amount

359of information can saturate the bus system so that the

360amount of data cannot be transferred fast enough to

Frame rate using out-of-core method

3.80E-03

3.90E-03

4.00E-03

4.10E-03

4.20E-03

4.30E-03

4.40E-03

1 2 3 4 5 6 7 8 9 10

frame

etar
e

marf
=

e
marf

re
p

e
m it/1

out-of-core

Frame rate using out-of-core method

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

2.00E-02

1 2 3 4 5 6 7 8 9 10 11 12

frame

etar
e

marf
=

e
marf

re
p

e
mit/ 1

out-of-core

(a)

(b)

FIGURE 6. Resulting frames per second for rendering an overview of the complete geometric model of the coronary artery tree on
two different desktop PCs, one PC equipped with an Nvidia GeForce fx5200 graphics card (a), the other one equipped with an
Nvidia Quadro FX 4400 graphics card (b).

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

361 the graphic card. Even though the PCI Express (PCIe)

362 bus at 2.5 Gbit/s is faster than the advanced graphics

363 port (AGP) with transfer rates of up to 2 Gbit/s, both

364 bus systems can be saturated due to the large size of the

365 model. Second, the capabilities of the graphic card

366 itself may not be sufficient to render the data fast

367 enough. Third, there may not be enough main memory

368 available to store the entire data set. Common 32-bit

369 desktop computers can only be equipped with up to

370 4 GB of main memory which is not enough for storing

371 the entire geometric representation. If additional

372 information is to be displayed, such as colors for the

373 vessel segments to superimpose pressure or flow, this

374 increases even further. However, the memory require-

375 ments for storing color information are significantly

376 less than those for the geometry (about 1%) so that it

377 would not reduce the performance significantly.

378 Sixty-four bit computers are becoming available,

379 which can be equipped with up to 16 GB of main

380 memory. BIOS and driver limitations, however, often

381 still limit the amount of memory to 3 GB. Whenever

382 the available memory is not sufficient for storing the

383 entire geometry, the hard disk needs to be used as

384 secondary storage which results in significantly slower

385 data access.

386 In order to alleviate these limiting factors, the

387 number of triangles employed to display the model

388 needs to be reduced resulting in less data that needs to

389 be processed. Suitable techniques include geometry

390 reduction techniques which implies that the geometric

391 model is displayed with a reduced number of triangles

392 in those areas that are far from the view point. In

393addition to a view-dependent level-of-detail represen-

394tation based on distance, occlusion-based methods can

395be used. These techniques allow the identification of

396areas in the model that contribute little to the final

397image. This is usually due to the fact that the segments

398located in those areas are obscured by other segments

399which are positioned more closely to the view point

400when projected onto the viewing plane. These occluded

401areas of the model can then be either eliminated or

402rendered using a lower resolution and consequently

403reduce the overall number of triangles.

404Tree-shaped geometric structures have certain

405unique properties that render most traditional occlu-

406sion culling algorithms inefficient. For instance, when

407rendering architectural models or iso-surface repre-

408sentations of objects, occlusion frequently occurs. As

409an example, if the camera is located inside a room with

410no windows of an architectural model, the entire out-

411side world is not visible, thus occluded. This is not

412likely to happen in tree-shaped data sets because the

413scene consists predominantly of relatively skinny ele-

414ments which make partial occlusion much more likely

415than complete occlusion. Consequently, occlusion

416query techniques can only be used as a measure for

417visibility indicating the extent to which the precision of

418the model can be reduced without changing the visual

419appearance very much. Due to the limited occlusion

420within such a vascular tree structure, occlusion culling

421should not be used as a method for completely elimi-

422nating parts of the scene because certain areas may still

423be partially visible in most cases. Therefore, the present

424system uses OpenGL occlusion queries over the

Frame rate using out-of-core method during close-up view

0

0.5

1

1.5

2

2.5

3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169

frame

etar e
mar f = e

marf re
p

e
m it/1

out-of-core

FIGURE 7. Resulting frames per second for rendering the complete geometric model of the coronary artery tree on a desktop PC
equipped with an Nvidia GeForce fx5200 graphics card during close-up view.

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

425 GL_HP-occlusion-test which allows the system to

426 determine the amount of occlusion.

427 Comparison with Other Studies

428 The resulting geometrical representation of the

429 simulated vascular tree consists of millions of vessels.

430 Due to the tremendous complexity of this model, the

431 images shown in the original article15 were generated

432 using the POVray ray tracer. Those only include ves-

433 sels down to order five to prevent POVray from being

434 overwhelmed by the complexity of the model. It took

435 about two minutes to generate an image of the reduced

436 vasculature using POVray. In this article, however, all

437 vessels down to the capillaries are shown and less time

438 is needed for creating an image.

439 The proposed method is based on a real-time, view-

440 dependent simplification of complex models. Several

441 publications exist that employ similar methods.

442 Progressive meshes as introduced by Hoppe13 were

443 designed to obtain increasingly coarser representations

444 of a mesh by applying edge collapse operations.

445 Applying this method, a level-of-detail description of

446 the model is derived. In one of his later publications,

447 Hoppe14 describes efficient data structures and algo-

448 rithms for implementing progressive meshes. Xia

449 et al.34 defined the notion of a merge tree that stores

450 the edge collapse operations in a hierarchical manner

451 to create a continuous-resolution representation of an

452 object. A similar approach was proposed by El-Sana

453 et al.5 where a binary view-dependence tree is created

454 containing general vertex-pair collapses. This tree can

455 then be used to generate the required triangles for

456 display at run time. Andujar et al.1 used classical

457 occlusion culling algorithms and computed potentially

458 visible sets (PVS) which consist of those polygons that

459 are likely to be visible. These sets are supersets of the

460 sets of all visible polygons for which the degree of

461 visibility is determined to create view-dependent

462 occlusion culling. Shaffer et al.31 developed a pro-

463 gressive mesh simplification algorithm which clusters

464 the vertices using a BSP-tree resulting in an adaptive

465 simplification of the polygonal mesh. Pajarola23

466 introduces FastMesh which defines a hierarchy on half-

467 edges that reduces the storage cost in comparison to

468 vertex hierarchies. El-Sana et al.6 combine a view-

469 dependence tree with spatial sub-division techniques to

470 avoid scanning of active nodes that do not contribute

471 to the incremental update of the selected level of detail.

472 Several algorithms for reducing the complexity of a

473 scene using occlusion culling are available both

474 implemented in software and in hardware.3 Greene10

475 developed an algorithm based on hierarchical tiling

476 that is able to determine whether a convex polygon is

477 inside, outside, or intersecting an image hierarchy.

478Bartz et al.2 render bounding volumes into a virtual

479occlusion buffer using OpenGL and read back the

480results from the graphics hardware to determine

481occlusion. Since reading back from the OpenGL buffer

482is slow, an interleaving scheme is applied to speed up

483read-back. Zhang et al.39 describe hierarchical image-

484space occlusion maps for visibility culling. The culling

485algorithm uses an object-space bounding volume

486hierarchy and can be implemented using graphics

487hardware. Klosowski et al.17 propose a visibility cull-

488ing algorithm based on Prioritized Layered Projection

489(PLP) that can be implemented using graphics hard-

490ware. El-Sana et al.6 combine the PLP approach with

491view-dependency resulting in a view-dependent occlu-

492sion culling. Yoon et al.36 use a clustering hierarchy

493for refining the underlying grid to obtain a level-

494of-detail representation for arbitrary triangle meshes in

495addition to hardware occlusion culling. Recent efforts

496show that current hardware improvements and the

497usage of a clustered hierarchy of progressive meshes can

498improve rendering speed even further.37 However,

499most of the described methods are not suitable for

500directly reducing the complexity of a model of tree-like

501anatomical structures, such as the coronary vascular

502tree.

503Different techniques for visualizing vascular struc-

504tures can be found in the literature. Gerig et al.9

505describe how to derive a skeletal structure from a

506volumetric image based on hysteriosis thresholding

507and binary thinning. Hahn et al.12 employ geometrical

508primitives, such as truncated cones, to visualize vessels

509inside the human liver. A similar approach has been

510taken for the rendering method described in this arti-

511cle. The model is represented by conic cylinders as

512previously described. Masutani et al.18 used cylinders

513aligned to the vessel skeleton to visualize the vascula-

514ture. Different radii at branchings resulted in discon-

515tinuities when using this method. Felkel et al.8

516reconstructed liver vessels from center line and radius

517information to supply an augmented reality tool for

518surgery. Puig et al.24 developed a system for exploring

519cerebral blood vessels using a symbolic model with a

520focus on geometric continuity and on realistic shading.

521Oeltze et al.20,22 use convolution surfaces to obtain a

522smoother representation of blood vessels extracted

523from CT or MR data.

524Deussen et al.4 use points and lines to represent

525complex systems of plants as approximation reducing

526the overall number of triangles compared to their ori-

527ginal representation. Gumhold et al.11 use a splatting

528approach based on ellipsoids for rendering scientific

529data sets. The advantage of such a glyph-based

530approach is the potential of deploying the hardware for

531rendering. Reina et al.25 showed this when rendering

532molecular visualizations of 500,000 particles at 10 fps.

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

533 In a comparative study, the present system was

534 compared to an implementation on a high-end visu-

535 alization server: the Sun Fire V880z visualization ser-

536 ver. This server is equipped with 16 GB of main

537 memory allowing the system to store the entire geo-

538 metric model in main memory. Despite the fact that

539 this server is geared towards optimal rendering per-

540 formance for large data sets, the overall performance

541 was slower compared to the second test system using

542 an Nvidia Quadro FX 4400. Generating a single pro-

543 jected image took 90 s on the Sun server while the

544 second test system using the present system completed

545 the task after 62 s.

546 Significance

547 Virtual models of normal hearts are needed as a

548 physiologic reference. Pathological states can then be

549 studied in relation to changes in model parameters that

550 alter coronary perfusion. With such computational

551 models, researchers can analyze the effects of different

552 treatment options (medical and surgical), and ulti-

553 mately find rational ways to prevent and treat coro-

554 nary heart disease. Based on detailed anatomically

555 based models, computational fluid dynamics simula-

556 tions can yield accurate simulation of blood flow in

557 health and disease. In order to visualize the present

558 anatomically based models that may include future

559 hemodynamic and physiological data, it is essential to

560 have efficient and fast visualization techniques. The

561 present study is the first step in that direction.

562 Conclusions and Future Work

563 A rendering system has been described which

564 exploits the tree-shaped topology to increase rendering

565 performance. Due to the nature of tree-shaped struc-

566 tures, hierarchical meshes to obtain different levels of

567 detail can be generated based on the topological

568 structure of the data; i.e., individual segments can be

569 clustered as entities. Geometry reduction techniques as

570 well as occlusion culling enables the system to render

571 each frame four times faster than the standard method

572 that displays the full model directly without simplifi-

573 cation methods. For the LCx data set, the number of

574 triangles can be reduced in such a way that the amount

575 of geometric information is small enough to be trans-

576 ferred to the graphics hardware and fast enough to

577 utilize the full performance potential of the hardware.

578 Using out-of-core techniques, the full model can be

579 displayed even on computer systems equipped with

580 relatively small amount of memory since only 64 MB

581 are sufficient for the algorithm. With a high-end PC

582 system, rendering can be even faster using out-of-core

583 techniques compared to workstations equipped with

584much more main memory, such as the Sun Fire V880z

585visualization server.

586In the future, ray tracing or ray casting algorithms

587will be applied to the data set to explore if there are any

588performance benefits from this approach. Additionally,

589GPU based methods that render the conic cylinders

590completely on the GPU might increase performance by

591reducing the amount of information that needs to be

592stored in memory and avoids data transfer on the bus

593systems. Using other types of geometry approximations

594for the tree segments in combination with hardware

595based approaches might yield even better performance,

596such as line primitives.32

597ACKNOWLEDGMENTS

598The authors would like to thank Falko Kuester, UC

599Irvine, for providing the high-end PC system equipped

600with an Nvidia Quadro FX 4400. This work was sup-

601ported in part by the National Institute of Health—

602National Heart, Lung, and Blood Institute Grant 2 R01

603HL055554-06 (GSK), by the National Institute of

604Mental Health (NIMH) through a subcontract with the

605Center for Neuroscience at the University of Califor-

606nia, Davis (5 P20 MH60975), by the National Part-

607nership for Advanced Computational Infrastructure

608(NPACI), Interaction Environments (IE) Thrust

609(10195430 00120410).
610

611APPENDIX

612Rendering of Massive Tree-Like Structures

613In order to analyze large-scale tree-like structures,

614appropriate visualization methods are necessary.

615Whenever the geometry data of such a structure exceed

616the amount of main memory of the computer, the

617application of several techniques to both be able to

618handle the data set as well as improve performance are

619required. This Appendix provides details about the

620data format and explains the different techniques that

621were applied to visualize the data on common desktop

622computers.

623Visualizing Tree-Like Structures

624The structure is given as a sequence of consecutive

625segments where one segment can have multiple

626daughter vessels (mostly two as bifurcations) as suc-

627cessors, forming a tree-shaped structure with a highly

628asymmetric branching pattern. Each segment in the

629tree is characterized by the coordinates and radii of its

630proximal and distal nodes. This data format is similar

631to the one provided by commercial software packages,

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

632 such as Analyze.26,28,29 Since the radii of two consec-

633 utive nodes are not necessarily equal, a conic cylinder

634 is defined based on this data resembling each segment.

635 All conic cylinders together then define a representa-

636 tion of the vasculature as prescribed by the model. For

637 a coronary arterial tree, there exist three major bran-

638 ches in the data set representing the RCA, LAD and

639 LCx arterial tree, respectively. Every branch includes a

640 complete set of linked vessel segments from the mac-

641 rovasculature down to the first capillary bifurcation.

642 In order to generate a visual representation of the

643 vascular tree, OpenGL and computer graphics tech-

644 niques are used. In computer graphics, a camera

645 analogy is followed similar to taking a photograph. A

646 virtual camera is placed next to the objects, in this case

647 the arterial tree. The orientation of the camera iden-

648 tifies the view direction; while the view direction

649 combined with the location of the camera define the

650 view. Using this definition of a view, all objects are

651 then projected onto a virtual image plane. One can

652 think of this image plane as the film inside the camera

653 that was just defined. This projected image is then

654 displayed on the computer screen. Consequently, the

655 view as defined here identifies exactly what parts of the

656 objects are displayed on the computer screen.

657 Figure 8 shows an illustration of this configura-

658 tion. Since current graphics hardware does not sup-

659 port the display of complex objects; simple, more

660 universal primitives have to be used. Due to its uni-

661 versal nature, triangles are the most common primi-

662 tives in computer graphics since every complex object

663 can be approximated using a set of triangles. As can

664 be seen in Fig. 8, the conic cylinders that are used to

665 represent the arterial tree are broken down into a

666 series of triangles as well. The triangles are arranged

667 in such a way that they approximate a conic cylinder;

668 i.e., two of the edges of each triangle run along the

669 main direction of the conic cylinder while one edge is

670parallel to one of the end caps of the cylinders.

671Hence, circles are computed at the transition between

672vessel segments in a first step. Since cylindrical

673arteries are considered, these circles are perfectly

674round. The circles are connected along each vessel

675segment using triangles to approximate the conic

676cylinder. For this, the circles are approximated by a

677series of points by computing a fixed number of

678points at equidistant locations along the circle. A set

679of two points (one on the circle at the one end of the

680cylinder, the second on the opposite side) are then

681selected in such a way that they form the closest

682distance between. This forms the first edge of the first

683triangle. By connecting the next points following the

684discretization of the circles in an alternating fashion,

685triangles are formed that approximate the conic cyl-

686inders. Figure 8 illustrates this by showing a sample

687triangle imposed on one of the conic cylinders.

688To increase performance, OpenGL provides

689so-called triangle strips that require less data to be

690transferred to the graphics hardware for image display.

691In this case, instead of specifying all three vertices for

692all triangles, only the vertices for the first triangle need

693to be specified completely. For the subsquent triangles,

694only one vertex is specified and the last two vertices of

695the previous triangle are re-used, forming a new tri-

696angle that is directly connected to its predecessor. Since

697the triangles approximating a conic cylinder (and

698therefore a vessel segment) are all attached to each

699other, a triangle strip can be used to reduce the number

700of vertices that need to be specified. As an additional

701performance increase, OpenGL vertex arrays are used.

702Vertex arrays require less function calls and hence can

703be processed by the hardware more efficiently. To use

704OpenGL vertex arrays, all vertices for a single triangle

705strip are stored in a consecutive memory area. This

706memory area can be passed onto OpenGL in a single

707function call which results in drawing the entire

708triangle strip. Hence, an entire vessel segment is

709represented by one vertex array.

710To achieve a smooth transition between consecutive

711vessel segments, the circle at the end of each cylinder is

712not necessarily orthogonal to the cylinder itself.

713Instead, these circles are created in such a way that the

714plane in which the circle resides divides the angle

715between the center-lines of the two consecutive conic

716cylinders into two equal halves (Fig. 8). Using this

717approach, the center lines of two subsequent segments

718can form an angle of up to 180 degrees (reverse

719direction). However, the most common angles in the

720coronary arterial tree are much smaller. Rotation of

721the cylinder ends as previously described does not

722change the way it is approximated by a triangle strip.

723For the smallest of the three branches (LCx arterial

724tree), the number of triangles that is required for

FIGURE 8. Interface between two successive vessel seg-
ments shown as conic cylinders which consist of several tri-
angles. Camera and view direction are also shown.

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

725 visualization of all 1.8-million vessel segments is

726 25 million triangles. The entire coronary tree consist-

727 ing of 10 million vessel segments is represented by

728 220 million triangles based on a discretization of each

729 conic cylinder using sixteen triangles. The conic cylin-

730 der representing each segment is approximated by a

731 single triangle strip which is constructed as follows: the

732 two ends of the conic cylinder are discretized using a

733 maximum of eight points. These points are then con-

734 nected with triangles. Using a point on each end

735 alternately, this results in a triangle strip. At full res-

736 olution, this triangle strip consists of 16 triangles ren-

737 dered by 18 vertices. Due to the size and detail of the

738 data set, the geometry of the vascular structure

739 requires representation of the coordinates of the ver-

740 tices using 32-bit floating-point numbers. Lower-pre-

741 cision representations result in truncated positions of

742 the vertices and therefore can change the overall

743 geometry significantly. For correct illumination of the

744 geometry, normal vectors are included using another

745 set of three 32-bit floating point values. These normal

746 vectors are required for computing the correct reflec-

747 tion of light on top of the conic cylinders used as

748 geometric representation of the vascular structure. The

749 normal vectors computed for every vertex based on the

750 original geometry (the conic cylinders). This yields

751 significantly better results and achieves an additional

752 depth cue and therefore a more realistic image. In this

753 way, a user is much better able to recognize the 3-D

754 geometry in less time even from a projected 2-D image.

755 Overall, for representing 220 million triangles using

756 vertex coordinates and normal vectors, about 6GB of

757 memory is required in order for the entire geometric

758 representation of the vascular structure to be stored.

759 This entire information needs to be processed for every

760 projected image that is used as visualization of the

761 vascular structure.

762 Geometry Reduction

763 In order to increase performance, a common

764 approach is to reduce the amount of geometry infor-

765 mation that needs to be processed for a single image.

766 Usually, this is achieved by using a simpler represen-

767 tation and/or removing parts of the data set that is

768 either invisible or only visible to a small extent. Com-

769 pared to arbitrary triangle meshes, tree-shaped data

770 sets have special topological features that can be taken

771 advantage of to speed up the visualization. First, the

772 connectivity between different segments can be used to

773 simplify the structure by skipping segments. This

774 results in a simpler representation of the data. Sec-

775 ondly, the cylindrical shape of the segments can be

776 used to identify backfacing triangles on a per-segment

777 basis instead of determining this information for each

778triangle which removes data invisible due to the pro-

779jection. Since the cylinders are rendered as single tri-

780angle strips, the connectivity information can also be

781exploited when rendering the model; e.g., for backface

782culling as described later. Different levels of detail can

783be defined based on the precision at which a conic

784cylinder is drawn by reducing the number of points for

785each delimiting circle of the cylinders.

786In the current implementation, three levels of detail

787are used: a full resolution level where each conic cyl-

788inder is represented by 16 triangles, a reduced level

789with 8 triangles per cylinder, and a low level of detail

790that skips every other segment and renders each

791remaining cylinder with 8 triangles. Obviously, the low

792level-of-detail mode should only be used in areas far

793away from the view point and mostly occluded; i.e.,

794covered by a multitude of other vessel segments and

795therefore almost invisible. However, since it is almost

796completely occluded, a user would need to rotate or

797zoom in order to inspect this part of the vasculature.

798Once such an area is rotated and therefore more visi-

799ble, the system would automatically increase the level

800of detail. Similarly, cracks that occur at the transition

801between different levels of detail are not noticeable

802because these transitions occur sufficiently far from the

803view point and only in at least partly occluded areas.

804In order to decide the resolution for a particular

805segment, one could determine the distance between the

806current camera position and the segment itself or

807determine the number of pixels that would be projected

808onto the screen to represent this segment. However,

809due to the enormous amount of segments, the com-

810putational effort is too costly which would slow down

811the rendering speed to several seconds per frame even

812for the LCx data set. In fact, computing the distances

813between all vessel segments and the camera would take

814longer than computing the projected image for the

815entire data set without any reduction techniques.

816To remedy the situation, a spatial data structure is

817used. It is essential to the overall performance of the

818system that a simple data structure is used which

819requires only minimal computation. Hence, a simple

820subdivision scheme of the space covered by the data set

821is used. This space is equally divided in each dimension

822into sub-areas of the same size. Then, only the distance

823between the center of this sub-area and the camera

824needs to be calculated during the rendering process to

825determine the level of detail for the whole sub-area.

826Based on a set of thresholds provided by the user, all

827segments contained in each sub-area are rendered in

828full, reduced, or low level of detail, respectively. These

829thresholds describe the distance between the center of

830the sub-area and the camera at which the algorithm

831will automatically switch to a lower geometric resolu-

832tion. Consequently, these thresholds determine the

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

833 distance to the camera at which the system switches to

834 a lower resolution. Using this type of geometry

835 reduction, the number of triangles (e.g., the LCx cor-

836 onary artery) can be reduced from 25 to about

837 20 million triangles without introducing noticeable

838 artifacts.

839 Backface Culling

840 To reduce the number of triangles even further, all

841 triangles that are located at the backside of the conic

842 cylinders facing away from the camera can be removed

843 since they are not visible. OpenGL is able to remove

844 the backfacing triangles but then they still have to be

845 transmitted to and processed by the graphics card. In

846 order to avoid transmitting this amount of informa-

847 tion, these triangles can be identified in software on the

848 CPU. Of course, a particular vessel segment can be

849 aligned at virtually any angle to the viewing direction

850 with respect to the first triangle within the triangle

851 strip. Therefore, the set of triangles facing backward

852 can be different for each individual vessel segment.

853 This implies that the computation has to be done for

854 each vessel segment individually. Consequently, these

855 computations have to be carried out in a very efficient

856 way in order to avoid slowing down the rendering

857 process. Again, the fact that the topology of a vessel

858 segment is known can be exploited. Each vessel seg-

859 ment is represented by a conic cylinder. Consequently,

860 usually one half of the cylinder is visible, while the

861 other half is not. The triangles representing the invis-

862 ible half can be identified using the normal vectors

863 since these are computed in such a way that they are

864 always pointing outwards with respect to the conic

865 cylinder. One approach for identifying those triangles

866 with normals facing away from the view point is to

867 check the normals of every triangle individually. This

868 would represent a computational burden, however,

869 that would slow down the rendering process. Since the

870 vessel segments are rendered as triangle strips, both the

871 visible and the invisible halves are represented by two

872 sets of consecutive triangles. Thus, in order to identify

873 the set of back-facing triangles only, the transition

874 from triangles with normals facing towards the camera

875 and those pointing away from the camera has to be

876 found which is significantly less expensive computa-

877 tionally. Consequently, only the triangles facing the

878 camera which are visible triangles need to be drawn

879 resulting in a significant reduction in the number of

880 triangles that need to be sent to the graphics hardware.

881 Occlusion-Based Reduction

882 Another way of reducing the number of triangles

883 required for a geometric representation of the vascular

884 structure is to remove triangles that represent conic

885cylinders which are hidden behind a multitude of other

886vessel segments with respect to the current projection

887(referred to as occlusion). In a tree-shaped data set,

888complete occlusion is not likely to occur since a single

889segment does not significantly obstruct the geometry

890located behind it. Many of the segments need to be co-

891located and packed very densely in a particular area to

892occlude other parts of the vascular tree. However,

893complete occlusion is not likely to occur. Thus, those

894parts of the tree which are detected as (partly) occluded

895are still displayed using the lowest level of detail.

896The present software system employs occlusion

897queries implemented in OpenGL 1.5.30 During such a

898query, the OpenGL library keeps track of whether the

899specified graphical primitives result in pixels actually

900drawn to the projected image. In contrast to the

901GL_HP-occlusion_test, which only returns a binary

902true or false result depending on whether pixels were

903drawn or not, the occlusion queries defined in OpenGL

9041.5 allow the retrieval of the number of fragments

905(pixels) that contribute to the current projected image

906during the query. Assuming frame coherence (two

907consecutive projected images being similar), we can use

908these queries to check for occlusion. By drawing a

909bounding box of a sub-area, these queries allow the

910software to determine how much of a specific sub-area

911is visible based on the previous projected image. These

912sub-areas are identical with the ones defined by the

913spatial data structure used for the previously described

914geometry reduction; i.e., an equidistant sub-division

915into cubical areas. Based on a user-defined threshold

916describing the number of pixels that need to be visible,

917the present system can determine the level-of-detail to

918be used for the vessel segments contained in this sub-

919area. The smaller the threshold the less vessels are

920required to occlude a sub-area. Since the vessel seg-

921ments are spread over the entire volume relatively

922evenly, a more sophisticated sub-division technique

923such as binary-space-portioning (BSP) trees or k-d

924trees, which sub-divide space recursively at arbitrary

925planes instead of using a fixed scheme, would not result

926in a significant improvement. Also, a simpler sub-

927division scheme allows for faster processing of the

928individual sub-elements during testing for occlusion.

929For each element of the sub-division, a hardware

930occlusion query is issued as described above to check

931how many fragments pass the depth test; i.e., con-

932tribute to the current projected image. This results in

933an estimate of how much of the specific sub-area

934contributes to the current projected image. To avoid

935actual drawing of the bounding boxes, the color mask

936is set to zero in OpenGL. Similarly, the OpenGL depth

937buffer is marked as read-only to prevent the bounding

938boxes from changing the depth values and therefore

939occlude each other.

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

940 Occlusion queries supported on GeForce 3 and

941 subsequent NVidia GPUs allow many queries to be

942 performed simultaneously. Therefore, all bounding

943 boxes that are needed for the occlusion queries are

944 drawn first. The result of each occlusion query is stored

945 in the memory of the graphics hardware. To avoid

946 stalling of the graphics pipeline, the result is read back

947 only once for all sub-areas after all occlusion queries

948 are finished. Each occlusion query returns the number

949 of fragments of the bounding box that would actually

950 pass the depth test and would have been drawn if the

951 color mask would not have been set to zero. Conse-

952 quently, an occlusion query provides a precise measure

953 of how much of a certain sub-area is occluded. Based

954 on a user-specified threshold, the rendering system can

955 then decide whether to draw the vessel segments con-

956 tained in that specific area at the full level or at a lower

957 level of detail.

958 Out-of-Core Rendering

959 Since the whole data set representing the complete

960 model of the arterial vascular tree does not fit into the

961 main memory of regular desktop computers, an out-

962 of-core method was implemented to support larger

963 data sets. This technique uses hard drives as main

964 storage medium, while main memory is only used for

965 caching data. In this way, only the portion of the data

966 set which the algorithm is currently using needs to be

967 present in main memory. The system automatically

968 updates this portion; i.e., the system loads another

969 portion of the data set into main memory and removes

970 another whenever necessary. This enables rendering of

971 the entire model of the vasculature on current com-

972 modity hardware. In this approach, the geometry is

973 determined in a pre-computational step. For each of

974 the spatial sub-areas that are used during the render-

975 ing, the triangles needed for displaying all of the vessel

976 segments contained in this specific sub-area are com-

977 puted and then stored in a file. After that, the geometry

978 data can be removed from main memory. Using such a

979 streaming technique reduces the memory footprint

980 significantly. In our experiments the memory con-

981 sumption of the software implementation was less than

982 64 MB (as observed via the Windows task manager).

983 The geometric representation is pre-computed and

984 written to a file in form of binary arrays in the same

985 way it is used by OpenGL when rendered using vertex

986 arrays. Note that only the full resolution needs to be

987 stored in the out-of-core file since the lower levels-of-

988 detail can be derived by masking elements within the

989 vertex array. Offsets are stored at the beginning of the

990 binary file as depicted by Fig. 9. This section of the file

991 allows the system to determine where to find all vertex

992 arrays within the file for each of the sub-areas used by

993the spatial data structure. With this information, the

994exact location within the file can be determined and

995mapped to memory resulting in a pointer to the base

996address of all vertex arrays representing the geometry

997of all vessel segments within a specific sub-area. From

998this starting point, all vertex arrays can be processed as

999if they are stored in memory.

1000Implementation Details

1001The visualization system is based on OpenGL.

1002Occlusion queries as defined in OpenGL 1.5 are used for

1003the occlusion culling. Figure 10 shows sample code to

1004use occlusion queries in this context. Similar to display

1005lists, vertex arrays, which are significantly faster than

1006immediate mode rendering,34 are used for rendering the

1007vessel segments. OpenGL allows selecting the vertices of

1008a vertex array that are used during the rendering. Thus, a

1009lower level of detail can be realized simply by providing

1010OpenGL with a subset of indices that represents a lower

1011level of detail. This index array can be pre-computed and

1012then provided for every segment destined for lower res-

1013olution. Obviously, this index array is the same for each

1014segment due to the fact that the conic cylinder repre-

1015senting a single segment is discretized in the same way

1016for each segment. Figure 11 includes the source code

1017used for rendering vessel segments using vertex arrays.

Sub-area 1

Sub-area 2

Sub-area n

Offset 1

Offsets

Offset 2

Offset n

FIGURE 9. Out-of-core data file structure reflecting each
sub-area within the spatial data structure and their offsets.

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

// create reference ID in OpenGL for this query
GLuint id;
glGenQueries(1, &id);

// disbale color and depth mask to ensure that nothing is actually drawn
glColorMask (0, 0, 0, 0);
glDepthMask (0);
glBeginQuery (GL_SAMPLES_PASSED, id);

// draw the test object, i.e. a cube enclosing the current octree element
glBegin (GL_QUADS);
glVertex3dv (leafs[i][j][k].upperleft);
glVertex3d (leafs[i][j][k].lowerright[0],
 leafs[i][j][k].upperleft[1],
 leafs[i][j][k].upperleft[2]);
glVertex3d (leafs[i][j][k].lowerright[0],
 leafs[i][j][k].lowerright[1],
 leafs[i][j][k].upperleft[2]);
glVertex3d (leafs[i][j][k].upperleft[0],
 leafs[i][j][k].lowerright[1],
 leafs[i][j][k].upperleft[2]);
/* … other faces of the quad … */

glEnd ();

glEndQuery (GL_SAMPLES_PASSED);

// occlusion query finished, store the number of pixels in “result”
GLint result;
glGetQueryObjectiv (id, GL_QUERY_RESULT, &result);

// enable the color and depth mask again
glDepthMask (1);
glColorMask (1, 1, 1, 1);

FIGURE 10. Sample code for OpenGL occlusion query to determine the number of fragments (pixels) that would contribute to the
current image when drawing all vessel segments contained in a single octree element. The variable result will contain the exact
number of pixels that would be drawn for the bounding box of this specific octree element (for the sake of simplicity only the
drawing commands for the first face of the bounding box is shown).

// out-of-core data for this octree element can be found within the memory
// mapped area, identified by the variable “base”
OutOfCoreData *outofcoredata = (OutOfCoreData *)base;

// determine pointer to the current vessel segment within memory mapped
// area, i.e. skip the header information
char *vertexarray, *normalarray, *pointer =
 (base + sizeof (double) * 9 + sizeof (unsigned int));
OutOfCoreVertexData *outofcorevertexdata;

 // draw all vessel segments using OpenGL vertex arrays
 for (int i=0; i<outofcoredata->noelements; i++) {
 outofcorevertexdata = (OutOfCoreVertexData *)pointer;

 // determine the pointers to the vertex and normal data needed for
 // rendering within the memory mapped area
 vertexarray = pointer + sizeof (double) * 3;
 normalarray = vertexarray + sizeof (VATYPE) * novertices * 3;

 // declare vertex and normal arrays for OpenGL
 glVertexPointer (3, VATYPEARG, 0, (VATYPE *)vertexarray);
 glNormalPointer (VATYPEARGLOW, 0, (VATYPELOW *)normalarray);

 // draw current vessel segment
 glDrawElements (GL_TRIANGLE_STRIP, 6, GL_UNSIGNED_INT, start);
 trianglecount += 4;

 // advance the data pointer to the next vessel segment
 pointer += sizeof (double) * 3 +

3 * novertices * (sizeof (VATYPE) + sizeof (VATYPELOW));
 }

FIGURE 11. Sample code for drawing all vessel segments within an octree element using OpenGL vertex arrays; the geometry
data is retrieved from the memory mapped file. The starting location of the memory mapped area is indicated by the variable
‘‘base’’.

Visualization of Entire Coronary Arterial Tree

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

1018 The out-of-core rendering approach uses a single

1019 file that contains the pre-computed geometry

1020 describing the model. This file is accessed using

1021 memory mapping implemented in the Windows� and

1022 Linux operating systems. Figure 12 outlines the nec-

1023 essary function calls for memory mapping the geo-

1024 metric representation of the vasculature for the

1025 Windows� operating system. This has two major

1026 advantages. First, the file can be randomly accessed.

1027 File caching is handled entirely by the operating sys-

1028 tem. This approach utilizes the hardware capabilities

1029 of the memory management unit (MMU) within the

1030 CPU. Second, due to the file caching capabilities of

1031 the operating system, close-up views can be rendered

1032 at comparatively high frame rates. If the geometry

1033 that is needed for a close-up view fits into the file

1034 cache of the computer, no hard disk access is

1035 necessary making the rendering relatively fast. The

1036 out-of-core rendering mode has the advantage of

1037handling data sets larger than the available main

1038memory space.

1039REFERENCES

10401Andujar, C., C. Saona-Vazquez, I. Navazo and P. Brunet.
1041Integrating occlusion culling and levels of details through
1042hardly-visible sets. Computer Graphics Forum 19(3), 2000.
10432Bartz, D., M. Meißner, and T. Hüttner OpenGL-assisted
1044occlusion culling for large polygonal models. Computers
1045Graphics 23(5):667–679, 1999.
10463Cohen-Or, D., Y. Chrysanthou, C. T. Silva, and F. Du-
1047rand. A survey of visibility for walkthrough applications.
1048IEEE Trans. Visualization Computer Graphics 9(3):412–
1049431, 2003.
10504Deussen, O., C. Colditz, M. Stamminger, and G. Drettakis
1051Interactive Visualization of Complex Plant Ecosystems.
1052IEEE Visualization 2002:219–226, 2002.
10535El-Sana, J and A. Varshney. Generalized view-dependent
1054simplification. In P. Brunet & R. Scopigno (eds.) Computer

// create file handle for input file
filehandle =
 CreateFile (file,
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_SEQUENTIAL_SCAN || FILE_ATTRIBUTE_READONLY,
 NULL);

 if (!filehandle) {
 cerr << "ERROR: cannot open out-of-core file" << endl;
 return;
 }

// create a memory mapped file handle
mmaphandle = CreateFileMapping (filehandle,
 NULL,
 PAGE_READONLY,
 0,
 0,
 NULL);

// read offsets for identifying the individual octree elements
int i, j, k;
offsets = new unsigned int**[(division+1)];
leafsizes = new unsigned int**[(division+1)];
for (i=0; i<=division; i++) {
 offsets[i] = new unsigned int*[(division+1)];
 leafsizes[i] = new unsigned int*[(division+1)];
 for (j=0; j<=division; j++) {
 offsets[i][j] = new unsigned int[(division+1)];
 leafsizes[i][j] = new unsigned int[(division+1)];
 }
 }

// compute the size of the entire header information
generaloffset = sizeof (unsigned int) +
 3 * sizeof (double) +
 sizeof (OctreeArea) +
 (division + 1) * (division + 1) * (division + 1) *
 sizeof (unsigned int) * 2;

// create view for mapping offsets
char *base = (char *)MapViewOfFile (mmaphandle,
 FILE_MAP_READ,
 0,
 0,
 generaloffset);

FIGURE 12. Memory mapped reading of the header information from the out-of-core file; similarly the geometric information is
read from the out-of-core file for every octree element.

WISCHGOLL et al.

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

1055 Graphics Forum (Eurographics ,99), Vol. 18(3). The Eu-
1056 rographics Association and Blackwell Publishers: 83–94,
1057 1999.
1058 6El-Sana J., Sokolovsky, C. T. Silva. 2001 Integrated
1059 occlusion culling with view-dependent rendering. IEEE
1060 Visualization 2001:371–378.
1061 7El-Sana, J. and E. Bachmat Optimized view-dependent
1062 rendering for large polygonial datasets. IEEE Visualization
1063 2002:77–84, 2002: IEEE Computer Society.
1064 8Felkel, P, A. L. Fuhrmann, A. Kanitasar, and R. Wegen-
1065 kittel. Surface reconstruction of the branching vessels for
1066 augmented reality aided surgery, BIOSIGNAL, Vol. 1,
1067 VUTIUM Press: 252–254, 2002.
1068 9Gerig, G., T. Koller, G. Széhely, C. Brechbühler, O. Kü-
1069 bler. Symbolic description of 3-D structures applied to
1070 cerebral vessel tree obtained from MR angiography vol-
1071 ume data, Information Processing in Medical Imaging,
1072 Springer, LNCS: 94–111, 1993.
1073 10Greene, N. Hierarchical polygon tiling with coverage
1074 masks. ACM SIGGRAPH 1996:65–74, 1996.
1075 11Gumhold, S. Splatting Illuminated Ellipsoids with Depth
1076 Correction. In Proceedings of 8th International Fall
1077 Workshop on Vision, Modelling and Visualization 2003:
1078 245–252, 2003.
1079 12Hahn, H. K., B. Preim, D. Selle, and H. O. Peitgen Visu-
1080 alization and interaction techniques for the exploration of
1081 vascular structures. In IEEE Visualization 2001:395–402,
1082 2001: IEEE, IEEE Computer Society Press.
1083 13Hoppe, H. Progressive meshes. ACM SIGGRAPH
1084 1996:99–108, 1996.
1085 14Hoppe, H. Efficient implementation of progressive meshes.
1086 Computers Graphics 22(1):27–36, 1998: ISSN 0097–8493.
1087 15Kaimovitz, B., Y. Lanir, and G. S. Kassab Large-Scale 3-D
1088 Geometric Reconstruction of the Porcine Coronary Arte-
1089 rial Vasculature Based on Detailed Anatomical Data. Ann.
1090 Biomed. Eng. 33(11):1517–1535, 2005.
1091 16Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung
1092 Morphometry of pig coronary arterial trees. Am. J. Physiol.
1093 265(Heart Circ. Physiol. 34):H350–H365, 1993.
1094 17Klosowski, J. T. and C. T. Silva Efficient conservative
1095 visibility culling using the prioritized-layered projection
1096 algorithm. IEEE Trans. Visualization Computer Graphics
1097 7(4):365–379, 2001.
1098 18Linsen, L., B. J. Karis, E. G. McPherson, and B. Hamann
1099 Tree Growth Visualization. J. WSCG 13:81–88, 2005.
1100 19Masutani, Y., K. Masamune and T. Dohi. Region-grow-
1101 ing-based feature extraction algorithm for tree-like objects.
1102 Visualization in Biomedical Computing, Springer, LNCS:
1103 161–171, 1996.
1104 20Nordsletten, D. A., S. Blackett, M. D. Bentley, E. L. Rit-
1105 man, and N. P. Smith Structural Morphology of Renal
1106 Vasculature. Am. J. Physiol. Heart Circ. Physiol.
1107 291:H296–H309, 2006.
1108 21Oeltze, S., B. Preim. Visualization of Anatomic Tree
1109 Structures with Convolution Surfaces, IEEE/Eurographics
1110 Symposium on Visualization: 311–320, 2004.
1111 22Oeltze, S. and B. Preim Visualization of Vasculature with
1112 Convolution Surfaces: Method, Validation and Evaluation.
1113 IEEE Trans. Medical Imaging 24(4):540–548, 2005.
1114 23Pajarola, R. FastMesh: efficient view-dependent meshing.
1115 In B. Werner (ed.) Proceedings of the nineth Pacific

1116Conference on Computer Graphics and Applications
1117(PACIFIC GRAPHICS-01). IEEE Computer Society, Los
1118Alamitos, CA, Oct. 16–18: 22–30, 2001.
111924Puig, A., D. Tost, and I. Navazo An interactive celebral
1120blood vessel exploration system. IEEE Visualization
112197:443–446, 1997.
112225Reina, G. and T. Ertl. Hardware-Accelerated Glyphs for
1123Mono- and Dipoles in Molecular Dynamics Visualization,
1124Proceedings of EUROGRAPHICS – IEEE VGTC Sym-
1125posium on Visualization 2005: 177–182, 2005.
112626Ritman, E. L. Micro-computed tomography-current status
1127and developments. Annu. Rev. Biomed. Eng. 6:185–
11282082004.
112927Robb, R. A. The Biomedical Imaging Resource at Mayo
1130Clinic. Guest Editorial. IEEE Trans. Med. Imaging
113120(9):854–867, 2001.
113228Robb, R. A. and C. Barillot Interactive display and anal-
1133ysis of 3-D medical images. IEEE Trans Med Imaging
11348(3):217–226, 1989.
113529Robb, R. A., D. Hanson, R. A. Karwoski, A. G. Larson,
1136E. L. Workman, and M. C. Stacy ANALYZE: a compre-
1137hensive, operator-interactive software package for multi-
1138dimensional medical image display and analysis.
1139Computerized Med Imaging Graphics 13:433–454, 1989.
114030Segal, M. andK. Akeley. The OpenGL� Graphics System:
1141A Specification (Version 2.0–October 22, 2004), http://
1142www.opengl.org/documentation/specs/version2.0/
1143glspec20.pdf.
114431Shaffer, E. and M. Garland. Efficient Adaptive Simplifi-
1145cation of Massive Meshes. In IEEE Visualization 2001:
1146127–134, 2001.
114732Spaan, J. A., R. ter Wee, J. W. van Teeffelen, G. Streekstra,
1148M. Siebes, C. Kolyva, H. Vink, D. S. Fokkema, and E.
1149VanBavel. Visualization of intramural coronary vascula-
1150ture by an imaging cryomicrotome suggests compartmen-
1151talization of myocardial perfusion areas. Med. Biol. Eng.
1152Comput. 43(4):431–435, 2005.
115333Stoll, C., S. Gumhold, and H. Seidel Visualization with
1154stylized line primitives. IEEE Visualization 2005:695–702,
11552005.
115634Woo, M., J. Neider, and T. Davis. OpenGL Programming
1157Guide. Addison Wesley, 3rd edn, 2003.
115835Xia, J., J. El-Sana, and A. Varshney Adaptive real-time
1159level-of-detail-based rendering for polygonial models.
1160IEEE Trans. Visualization Computer Graphics 3(2):171–
1161183, 1997.
116236Yoon, S. E., B. Salomon, and D. Manocha. Interactive
1163view-dependent rendering with conservative occlusion
1164culling in complex environments. IEEE Visualization 2003
1165Proceedings: 163–170, 2003.
116637Yoon, S. E., B. Salomon, R. Gayle, and D. Manocha.
1167Quick-VDR: Interactive View-Dependent Rendering of
1168Massive Models. In IEEE Visualization 2004 Proceedings:
1169131–138, 2004.
117038Zamir, M. Nonsymmetrical bifurcations in arterial
1171branching. J. General Physiol. 72(6):837–845, 1978.
117239Zhang, H., D. Manocha, T. Hudson, and K. E. Hoff III
1173Visibility culling using hierarchical occlusion maps. Com-
1174puter Graphics 31(Annual Conference Series):77–88, 1997.

1175

Visualization of Entire Coronary Arterial Tree

