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Introduction 

Motivation 

The fields of medical imaging, vector field visualization, flow simulation, and computational 
fluid dynamics (CFD) produce large data sets. These datasets cannot be rendered in a 
reasonable amount of time. Rendering a complete data set at high resolution is often time-
consuming and intractable. Moreover, if a user is interested in only one small portion of a 
data set, it is wasteful to render the whole data set at high resolution. For example, a 
medical researcher might be interested not in an entire MRI data set, but only in a certain 
subregion. 

 

Figure 1. Original data set. 
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Figure 2. Main region representations. 

 

Figure 3. Main and subregion representations. 

Multiresolution Approach 

One might solve the above problem by viewing different regions, of a dataset, at different 
resolutions. Before isolating specific regions to render at higher resolutions, a user must 
first specify the main region. The main region is the portion containing the region of 
interest (ROI). The main region can be either the entire data set or a subset of it. Our 
algorithm will then generate a low resolution octree representation of the main region. 
Octrees are similar to binary trees. However, an octree has eight children on each internal 
node. In our representation, each node corresponds to a cubic region. The octree provides 
a natural mechanism for space subdivision. We render the main region at a low resolution 
to accelerate the visualization as shown by Figures 1 and 2. 

While a low resolution rendering does not provide great detail, it is often sufficient 
approximation for a user to locate the ROI. Only the ROI, usually a small subregion of the 
whole data set, should be rendered at the highest resolution as shown in Figure 3. 

Related Work 

Our algorithm subdivides the octree representation of space when approximation error 
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exceeds a threshold or when a user requests a refinement to a ROI. We begin with an 
initial, coarse, octree decomposition of a three-dimensional (3D) bounding box of the 
domain of a given volumetric data set. Initially, octree cells are split merely based on a 
local error estimate. The splitting process is terminated when a maximum number of cells 
is exceeded or when all cell-specific errors are smaller than some specified error threshold. 

We use the difference between the original data values and the constant value 
approximations, within each octree cell, as an error metric. The term data-dependent 
discretization refers to decompositions of space that approximate a continuous function 
by a piecewise constant or linear function. Previous work on data-dependent discretization 
techniques is covered in [5], [6], and [14]. 

Using an octree-based approximation, one generates a data-dependent, spatial 
decomposition that adapts to the underlying complexity of the input data. The techniques 
described in [8], [9], and [10] deal with the problem of decimating triangular surface 
meshes and adaptive refinement of tetrahedral volume meshes, respectively. These two 
approaches are aimed at the concentration of points in regions of high curvatures (or high 
second derivatives). This principle can be used to either eliminate points in nearly linearly 
varying regions (decimation) or to insert points in highly curved regions (refinement). The 
data-dependent, octree-based, decomposition scheme we describe in this paper is based 
on the principle of refinement: Our algorithm inserts octree cells when the error is large or 
when a user requests local refinement. 

Our technique constructs a data pyramid. A data-pyramid is a data hierarchy of cells with 
increasing precision [3]. The pyramid concept has also been extended to the adaptive 
construction of tetrahedral meshes for scattered scalar-valued data [1][2]. So-called 
multiresolution methods have been developed for polygonal and polyhedral approximations 
of surfaces, graphs of bivariate functions, and scalar fields defined over volumetric 
domains. Such approaches are described in [4], [7], and [11]. Our data-dependent, 
octree method can be viewed as a combined automatic and user-driven, hierarchical 
scheme supporting the visualization of large-scale, scientific data by multiple levels of 
approximation. Some of the fundamental concepts from computational geometry we are 
using are discussed in depth in [13]. 

Data Structure Issues 
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Figure 4. Example of an irregular grid. 

Points 

Suppose our data set is determined on an arbitrary, irregular grid without interior holes as 
shown in Figure 4. Each mesh element (cell) has an associated data value such as color, 
density, weight, temperature, etc.  

One of the most fundamental data structures used in our algorithm is a set of points. Each 
point corresponds to a cell of the original mesh. Each point describes an aspect of a mesh 
element such as: 

l coordinates defining the center  
l associated data values  
l area (2D case) or volume (3D case) of the mesh element  

In practice, it is convenient to maintain the set of points as a dynamically allocated array, 
and to use point indices rather than actual point coordinates.  

Resolutions and Representations of Main and Subregions 

We store two numbers defining the resolutions of the main region and the subregion. We 
also store two pointers to represent the main and the subregion. Each region is 
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represented by a quadtree or octree data structure in the 2D and 3D case, respectively.  

Quadtree and Octree as a Representation of a Region 

Each leaf, in a tree, corresponds to a different subregion. The union of these subregions 
covers the entire region. We display the region by drawing and coloring the bounding 
boxes of each leaf with average function value F calculated by the formula: 

 

where A is the area or volume of the bounding box of the node, 

ai is the area or volume associated with the i-th point, and 

fi is the function value associated with the i-th point. 

Error  

We assume that a mesh cell belongs to a quadrant or octant if the center of the mesh cell 
is inside the bounding box. We can safely neglect error caused by this assumption as 
illustrated by the following argument: Large data sets imply a large number of mesh cells. 
Assume that the area or volume of the whole data set is constant and that the area or 
volume of a single cell is relatively small. Given these assumptions, it is relatively 
inconsequential if a cell lies only partially inside, entirely inside or entirely outside a box as 
the area or volume of the bounding box can be approximated by the sum of the 
areas/volumes stored as part of the points of the leaf. 

We compute two errors for the bounding box, the root mean square (RMS) error and the 
maximum error (MAX): 

 

 

where F is the average of all function values associated with the box. 

To visualize the error of an approximation, we use gray-scale shading. In Figures 5 and 6 
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white corresponds to zero error, and black corresponds to the highest error. 

 

Figure 5. RMS errors for main region representations. 

 

Figure 6. RMS error for main and subregions representations. 

To reduce the error, we decrease the number of points per box and make the boxes 
smaller. A smaller region represented in the octree corresponds to smaller boxes of the 
octree's leaves. Thus, when a user specifies a relatively small region in the original 
volume, a high detail image results. To improve the quality of the resulting image without 
decreasing the area of the region, we need to increase the depth of the octree. Increasing 
the number of subdivisions (constructing a deeper tree) corresponds to increasing the 
resolution in the image. If a region is small enough to contain at most one point it will 
theoretically have zero error. 

At first blush, the error calculation appears to be a wasteful and time-consuming 
operation. However, in practice, the error function can accelerate the whole algorithm. In 
near constant-value regions, the error will be smaller than a tolerance e. In these regions, 
the number of subdivisions needed is significantly less than the maximally allowed depth 
of the tree.  

Applications 
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We initialize the set of points, in our data structure, from an input data set and build the 
main octree corresponding to the main region with a depth. Typically, the depth of this 
main tree is low, as the main region need not be represented in great detail. Initializing 
the set of points and computing the main octree is straightforward as shown in Figure 7. 
After constructing the main tree, we can display the main region at low resolution, and the 
user can select a ROI. 

  

Figure 7. Main region and corresponding quadtree (2D case). 

We next modify modify our tree to construct a tree with greater depth in a selected 
subregion. To do this efficiently, we take advantage of the fact that the points are already 
sorted in the main tree. We use the main tree as a search tree and can easily find a 
node A whose bounding box contains our subregion. When building the suboctree, we do 
not consider all points. Instead we only consider those points inside the bounding box of 
node A. We therefore process a smaller number of points and speed up the algorithm. 
Figure 8 shows the selection of a box containing a desired subregion. 

 

Figure 8. Subregion inside main region not including center of main region. (Note: To build 
an octree for a subregion we consider only points of the SW branch of the main tree root, 

and we do not consider the portion of the textured points.) 

 

Figure 9. Subregion inside main region including center of main region. (Note: Space was 
subdivided at an uneven ratio, and, therefore, to build an octree for the sub region, we 
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consider only points of the SW branch of the main tree root and do not consider the points 
the within textured boxes.) 

 

Figure 10. Subregion inside the main region including center of main region. (Note: To 
build an octree for a subregion we consider only points of the NW-SE, NE-SW, SW-NE, and 
SE-NW branches of the main tree root and we do not consider points within the textured 

boxes.) 

However, if the subregion is near the center, the node whose bounding box contains the 
whole subregion might be the root making it necessary to re-process all points to build the 
sub-tree. There are several options to deal with this problem. If we knew the central 
location of the ROI a priori then we could subdivide the space into uneven segments (for 
example 1/3 or 2/3) when constructing the main tree as shown in Figure 9. Alternately, if 
node A is root, we can traverse the path from node A towards the leaves while purging 
points outside the subregion. Purging extraneous points is accomplished by ignoring all 
branches and leaves whose bounding boxes do not touch the ROI as shown in Figure 10.  

Implementation and Results 

Tree data structure  

Each node of the tree consists of the following fields: 

l a pointer to the parent node;  
l flags to indicate whether a node is a nonempty leaf, an empty leaf, or a branch; and  
l coordinates of the bounding box that contains all points associated with the node.  

The root's bounding box includes all points while leaves have the smallest bounding boxes 
in the tree. 

When a node is a branch, it also has fields such as a pointer to the North-West front node, 
a pointer to the South-East rear node, etc. In case of a non-empty leaf, the node includes 
the set of points (actually a set of indices to points) that belong to the leaf. In case of an 
empty leaf, it is sufficient for the node to have only the three basic fields. To visualize an 
octree, we can simply draw wire frames of bounding boxes of the octree nodes. 

Calculating Errors 

glyph13
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Consider the data set shown in Figure 1; a slice through a 3D data set. Each point, of this 
data set, has an associated RGB color value. To calculate the maximum error for an RGB 
value, we calculate the maximum error for the red, green, and blue color components and 
then choose the maximum of these three errors. 

To calculate the RMS error, we use the following formula: 

Error=(  di / N) 

where di is the distance between a ``point'' (ri, gi, bi) and the ``average point'' (R, G, B), 
and N is the total number of points. The values of R, G, and B are the components of the 
average color of the leaf; the values of ri, gi, and bi are the components of the color 
associated with the i-th point of the leaf. Thus, the above formula shows how much a RGB 
value of the i-th point varies from the average. 

Tree Depth and Error 

Increasing the depth of the tree decreases the error. For the data set shown in Figure 1, a 
main tree depth of two, leads to an average value of the RMS errors of 140 whereas a 
depth of four leads to an RMS error of 59. Increasing the depth by factor of two decreases 
the RMS error more than twice. 

By altering the subtree depth as shown in Figure 3 one might reduce the RMS error from 
132 at a depth of two to 66 at a depth of four. These results seem surprising. When both 
trees have the same depth (four), the RMS error of the representation of the small 
subregion is greater than the error of the representation of the main region. Figure 3 
might create the impression that one perceives a subregion in greater detail. We note that 
the far South and the far North parts of the main region are completely white. As a result, 
we have an extremely good approximation. In the subregion, we do not have such 
constant-colored spots, and the RMS error is high. However, the maximum error in the 
subregion is slightly lower than in the main region. (For example, for a depth of four, we 
obtain a maximum error of 210 for the subregion representation and 225 for the main 
region representation.) 

Conclusion and Future Work  

Our method allows a user to define an ROI in a 2D/3D data set, which will be rendered at 
the highest resolution, while the rest of the data set, or some part of it, will be rendered at 
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a lower resolution. The method can be used to navigate within the data set, so that the 
current region of interest is always displayed at a higher resolution than less important 
regions. Therefore, it provides a flexible interface, which allows arbitrary positioning of the 
ROI in 2D/3D space [12]. The underlying data structure of our algorithm is a tree 
(quadtree for the 2D case and octree for the 3D case). Setting specific resolution and 
allowed error tolerance, we prevent the tree structure from growing excessively in depth. 

Since the main region would be relatively large and we are using a low resolution to 
visualize it, we can assume that each leaf contains at least one point. We also assume that 
the error is greater than the tolerance e because otherwise a user should be satisfied with 
the quality of the main region, and there would be no reason for having a subregion. The 
additional overhead for allocating and storing the pointers suggests considering a hashing 
method as an alternative for the main region representation. If we were to use this 
approach, each square or cube would take less memory than a leaf, since we would not 
allocate memory for pointers to parents, flags, or a bounding box. Using hashing, we 
would associate a two-number index with each square or a three-number index with each 
cube. Knowing the indices and the size of the squares or cubes, we would calculate all 
necessary information to construct the tree for the subregion. This technique would help to 
accelerate the algorithm even more and contribute to saving time and memory. 
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