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Abstract 
 
Improved medical imaging technology has enabled biologists and other researchers to obtain 

better insight in the three-dimensional structure of the data they are dealing with.  3-D volume 

rendering helps to interpret data acquired from biomedical scanning devices. But the data sets 

obtained from these devices occupy huge amounts of space, which cannot be stored on one’s 

local hard drive. Moreover, transmitting these data sets over the network becomes difficult. To 

overcome these difficulties, large-scale repositories have been established where these data sets 

are stored and can be accessed by researchers all over the world. This paper focuses on 

methods that access the data from these large-scale repositories and enable interactive 

rendering of the biomedical objects in 3-D on the client side. This paper also illustrates 

accessing sub-volumes from the data sets. 

 
 
1. Introduction 
 
Radiologists, physicians, biologists and other researchers are conducting experiments on large-

scale biomedical data sets. These data sets occupy several hundreds of megabytes to about one 

hundred gigabytes of space, which makes them difficult to store on common desktop systems 

and regular workstations. San Diego Supercomputer Center (SDSC) maintains a large data 

repository (High Performance Storage System, HPSS) that allows researchers to make their 

data sets available and accessible to other researchers all over the world.  

The Scalable Visualization Toolkits (VisTools), an NPACI (National Partnership for 

Computational Infrastructure) initiative, primarily developed at SDSC, The Scripps Institute (La 

Jolla, CA), UC Davis, U Texas, and Mississippi State University, support a variety of different 



file formats to store all kinds of structured and unstructured meshes. The file format used for 

biomedical 3-D image data is the vol file format, which supports regular three-dimensional 

grids. The vol format can be encoded in three different formats, namely vols, volb and volc. If 

a data set contains scalar values, it is written as a vols file. This file format stores data as 8-bit 

scalar values. If a data set contains RGB or RGBA values, it is written in volb format (32 bits). 

Each byte represents a color channel. If no alpha channel is present, the alpha value is ‘0’. 64-

bit image data is written in volc format. A volc file stores element data as 64-bit RGB-alpha-

beta values. The color component values are truncated to 10 bits for red, 12 bits for green and 

10 bits for blue. The alpha and beta components are truncated to 16 bits each. 

The vol file format also supports a chunked layout scheme in which data is arranged in 

smaller portions, which allows for sub-volumes to be extracted. In a chunked layout, the 

elements around a selected element have neighboring x, y and z grid elements. In a non-

chunked layout, the data is typically arranged in slices (x/y planes), which makes it difficult and 

inefficient to access data from adjacent slices, i.e., along the z axis.  

 NPACI's Scalable Visualization Toolkits have been developed to support analysis, 

filtering, compositing and rendering of very large multi-dimensional, multi-modal, time-varying 

data sets. These VisTools have been designed to handle large data sets that do not fit on a 

regular local hard drive. The goal of NPACI’s Interaction Environments (IE) thrust is to 

provide infrastructure to make those large data sets available over a network to web-enabled 

desktop PC users. 

The following sections will describe the extraction of individual cross-sections from large 

data sets, the extraction of sub-volumes, and a texture-based 3-D reconstruction and rendering 

method for large data sets using Java3D.    

 
 
2. Background 
 
Volume rendering of biomedical data sets in 3-D is important for physicians and biologists to get 

a detailed view of a data set from a biomedical scanning device, such as CT (computed 

tomography), MRI (magnetic resonance imaging), PET (positron emission tomography), and 



CLSM (confocal laser-scanning microscopy). A standard method to visualize those data sets is 

raytracing [8]. This method is very time-consuming and inefficient for large-scale data sets. 

Most implementations are based on OpenGL and Open Inventor. Java was also used in volume 

rendering for providing web-based applications [1, 6]. Slicing of large volumetric data sets can 

be done locally on the client side [3] or remotely on the server side [7]. The problem is to 

transmit large amounts of data over a low-bandwidth network within a reasonable amount of 

time to allow for interactive rendering on the client side. Therefore, we favor the second 

approach (hierarchical data representation and sub-volume extraction on the server side, 

rendering on the client side). Work has also been done in slicing the biomedical data sets into 2-

D cross-sections and using them in texture mapping to reconstruct a 3-D volume [2, 3]. 

 The next section describes our approach. We extract 2-D cross-sections from large 

data sets that are stored on a High Performance Storage System (HPSS), and reconstruct a 

three-dimensional volume using a set of 2-D texture maps. The rendering is done on the client 

side. The actual algorithm has been implemented in Java3D.  

 
 
3. Extraction of 2-D cross-sections from large data sets 
 
NPACI's Scalable Visualization Toolkits are available both in a Java and in a C++ version. 

We have used the Java version to extract 2-D cross-sections from a CT scan of a human brain 

data set (ctbrain.vols). This data set consists of 512 x 231 x 512 elements. Each data element 

represents a scalar value. The size of this file is 60,555,264 bytes (approx. 57.8GB). This data 

set is composed of 512 cross-sections, each consisting of 512 x 231 pixels. The VisToolkit 

provides a method that reads a range of elements from a data set and returns their values in the 

host's byte order and word size. This method implements a decoder, which reads the data from 

the data set and decodes its format. It automatically recognizes the file type by identifying a 

magic number at the beginning of the file (volb, volc or vols). The resulting byte stream is 

returned and stored in a buffer. As each cross-section of the ctbrain.vols data set consists of 

512 x 231 elements, a total of 118,272 elements must be read from the data set in each 

iteration. Each cross-sections that has been extracted from the data set is written to a Portable 



Gray Map (PGM) file.  

 

     

              Figure 1: A cross-section showing     Figure 2: A cross-section showing  
                             the ear                                               a skull without nose 
 

     

              Figure 3: A cross-section showing     Figure 4: A cross-section showing  
                             a part of the nose                               the center of the nose    
 
 
4. CPU time analysis for extracting 2-D cross-sections from a large data set 
 
Reading the elements from a large data set stored in a data repository is one of the bottlenecks 

for interactive rendering, because it strongly affects the running time of the algorithm. The 

Scalable Visualization Toolkit uses an internal caching scheme, which is transparent to the 

user. The number of bytes read at a time does not necessarily coincide with the page or cache 

size, or the interleave factor of the hard drive. By changing the number of bytes read at one time 



from the vols file, we tried to find an optimal run length for the VisToolkit and the given 

hardware (Sun Ultra Sparc 10). If those numbers match, we can expect a performance gain. 

Therefore, the total CPU time taken to read the entire data set from the data repository has 

been analyzed. The results are shown in the table below. 

Total number of bytes in the ctbrain.vols data set = 60,555,264 

"x" = 512 elements 

"y" = 231 elements 

"z" = 512 elements 

 
 

Sno 

 

Number of bytes 
in an element 

Total no. of cross-
sections to be read 

No. of  bytes per 
each cross-section 

(bytes) 

 
CPU time (ms) 

1 1  512 118,272 8633.37 

2 2  256 236,544 9156.38 

3 4 128 473,088 7685.44 

4 8 64 946,176 7799.72 

5 16 32 1,892,352 7346.91 

6 32 16 3,784,704 7039.42 

7 64 8 7,569,408 7093.85 

8 128 4 15,138,816 7476.08 

9 256 2 30,277,632 9287.81 

 
Table 1: Results obtained with the application of our algorithm on the CT scan of a human brain 
data set. This table shows the CPU time required to access the entire data set for nine different 

executions of the algorithm. 
 
The results indicate that a run length of 32 bytes, which is a power of two, yields optimal 

performance for the given architecture. Similar experiments have been conducted on other 

hardware platforms with comparable results. 

 
 
 



5. Extracting sub volumes from a data set 
 
There are situations where the user might not be interested in the whole data set. For example, a 

biologist might be interested in viewing only a certain part of the data set in greater detail for his 

experiment. To handle such situations, sub-volumes of the data set need to be extracted [4]. 

The Scalable Visualization Toolkit implements a method for a chunked storage layout, which 

can be used to extract sub-volumes of the dataset. This method computes and returns a one-

dimensional memory index corresponding to the given n-dimensional grid coordinates in the 

chunked file format data set. By specifying the required sub-volume's n-dimensional grid 

coordinates, a corresponding one-dimensional memory index is obtained. These one-

dimensional memory indices are used to read the data from the file by using the same method 

that was used to extract a cross-section of the data set. This allows us to extract cross-sections 

from sub-volumes in a more efficient way. We used a file that has been stored in chunked 

format to extract sub-volumes. Our sample file is again a CT scan of a human brain 

(ctbrain_c32.vols).  

 

         

Figure 5: Cross-sections of different sub-volumes 
 
 
6. 3-D Reconstruction using Texture mapping 
 
Texture mapping is a technique to add visual richness to a scene. Creating a polygon and 

mapping a texture image onto it by specifying the texture image location and setting texturing 

attributes achieve texturing in Java3D. The 2-D cross-sections that have been extracted from 

the data set using the Scalable Visualization Toolkit are used to reconstruct a 3-D volume 

using texture mapping in Java3D. These cross-sections are not the same as the original slices, 



because the data set can be sliced in arbitrary direction. A TextureLoader utility class in 

Java3D is used to load the texture images. Since the Java3D TextureLoader class supports the 

GIF file format, all 2-D cross-sections that were extracted from the data set are converted from 

PGM to GIF format. Once the 2-D cross-sections are extracted, they are then mapped onto an 

aligned series of parallel polygons in back-to-front order. 2-D texture mapping in Java3D has 

been used to achieve this. All the polygons are drawn as parallel planes, and the 3-D texture 

coordinates are chosen accordingly. 

 

 

 

 

Figure 6:  Texture images mapped onto a stack of polygons 
                  
  Since the cross-sections are mapped one in front of the other, the first cross-section 

would be visible and the remaining cross-sections would be occluded. To make the remaining 

cross-sections visible, transparency values are assigned to all cross-sections that are used in 

texture mapping. Java3D supports two modes of transparency: a scalar transparency value can 

be applied to the texture as a whole, or a binary transparency value can be assigned to each 

pixel. The resulting semi-transparent [5] images of the data set give insight to interior structures. 

Following are the results that are obtained by using the per-plane transparency (Figures 7 and 

8). 

                                   

Figure 7: Back-to-front: A 3-D view of the ear              Figure 8: Simulated X-ray view  
 



Instead of setting transparency to an entire cross-section, we can eliminate the 

background pixels and keep the rest of the slice intact. All the 2-D cross-sections that are 

extracted from the data set contain background pixels. Removing all the background pixels from 

the 2-D cross-sections and using them in texture mapping creates a 3-D volume. To access and 

modify the RGBA pixel values of the 2-D cross-sections, Java2D BufferedImage and 

ColorModel classes have been used. The alpha component of the pixels constituting the skull is 

set to zero, while the alpha component of the remaining pixels is set to 255. The regions are 

distinguished by thresholding. During the rendering process, the alpha component of each pixel 

is checked. If the value is zero, then the pixel is drawn, otherwise the pixel is not drawn. To 

implement this, we used the RenderingAttributes class. 

 
 
7. Results 
 
The data set we worked on is a CT scan of a human brain. Our 3-D reconstruction algorithm 

was applied to different sets of 2-D cross sections of the data set. Results obtained when we 

applied our algorithm to the data set are shown below. The artifacts on the 3-D reconstructed 

image near the mouth are a part of the data set (Figures 9 and 10). 

 

                                                 

   Figure 9: 3-D reconstructed volume                 Figure 10: 3-D volume showing the bone                               

 
 
 
 
 



8. Conclusions 
 
This paper has presented methods to access large data sets, extract sub-volumes from large 

data sets, and to reconstruct a 3-D volume from a series of cross-sections. The 3-D volume 

gives a clear view of the data set, and the extracted sub-volumes provide a detailed view of a 

selected region of the data set. Future work will involve enhancing the visibility of the inner 

sections of the data using transparency, which is currently a problem in Java3D due to 

limitations in texture mapping. 
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