
VR-based Rendering Techniques for Large-scale
Biomedical Data Sets

Joerg Meyer
NSF Engineering Research Center (ERC) - Department of Computer Science
Mississippi State University - Box 9627 - Mississippi State, MS 39762-9627

jmeyer@cs.msstate.edu

Ragnar Borg, Bernd Hamann, Kenneth I. Joy
Center for Image Processing and Integrated Computing (CIPIC)

Department of Computer Science - University of California - One Shields Ave. - Davis, CA 95616-8562
Ragnar.Borg@proxycom.no, hamann@cs.ucdavis.edu, joy@cs.ucdavis.edu

Arthur J. Olson
The Scripps Research Institute - 10550 North Torrey Pines Road - La Jolla, CA 92037

olson@scripps.edu

Abstract

VR-based rendering of large-scale data sets is typically
limited by timing and complexity constraints of the ren-
dering engine. Decentralized rendering, such as ac-
cessing a large data repository over a network and
rendering the image on the client side, causes problems
due to the limited bandwidth of existing networks. We
present a combination of octree space subdivision and
wavelet compression techniques to store large volumet-
ric data sets in a hierarchical fashion, and we incorpo-
rate a unique numbering scheme, so that subvolumes
(regions-of-interest) can be extracted efficiently at dif-
ferent levels of resolution.

Keywords: large-scale visualization, biomedical imaging, re-
mote visualization, multiresolution, octree, wavelet, virtual reality

1. Introduction

We present a framework for distributed hierarchi-
cal rendering of large-scale data sets that addresses
two problems at the same time: (i) limited network
bandwidth and (ii) limited rendering resources.
Our goal is to compactify the data set and to break
it down into smaller bricks, while making effec-
tive use of multiresolution techniques. Our system
uses a Windows NT-based server system which is
both data repository and content provider for
shared rendering applications. The client accesses
the server via a web-based interface.

The client selects a data set and sends a request for
information retrieval to the server. The server ana-
lyzes the request and returns a customized Java ap-

plet and the appropriate data. The Java applet is
optimized for a specific rendering task. This
means that the rendering algorithm is customized
for a particular problem set, thus keeping the ap-
plet small by avoiding additional overhead for dif-
ferent cases. The initial data set is also small and
will be refined later upon additional requests by
the client. Our hierarchical rendering techniques
include adaptive space subdivision algorithms,
such as adaptive octrees for volumes, wavelet-
based data reduction and storage of large volume
data sets, and progressive transmission techniques
for hierarchically stored volume data sets. The
web-based user interface combines HTML-form-
driven server requests with customized Java ap-
plets, which are transmitted by the server to ac-
complish a particular rendering task.

Our prototype implementation features 2-D/3-D
preview capability; interactive cutting planes (in a
3-D rendering, with hierarchical isosurface mod-
els to provide context information); a lens para-
digm to examine a particular region-of-interest
(variable magnification and lens shape, interac-
tively modifiable ROI); etc. Complex scenes can
be precomputed on the server side and transmitted
as a VRML2 file to the client so that the client can
render and the user can interact with it in real time.

2. Memory-efficient storage and access

Original data are usually structured as a set of files,
which represents a series of 2-D cross-sections.

VR-based Rendering Techniques for Large-scale Biomedical Data Sets

2

Putting all those slices together, we obtain a 3-D
volume. Unfortunately, when we access the data,
we typically don’ t need the implicit coherency
across single slices. This coherency stretches only
across one direction. Instead, we need brick-like
coherency within subvolumes. We present a new
datastructure, which uses a combination of delim-
ited octree space subdivision and wavelet com-
pression techniques to achieve better performance.

We present an efficient indexing scheme, a suit-
able data reduction method, and an efficient com-
pression scheme. All techniques are based on
integer arithmetic and are optimized for speed. Bi-
nary bit operations allow for memory efficient
storage and access.

We use the standard filesystem to store our derived
datastructures, and we use filenames as keys to the
database, thus avoiding additional overhead,
which is typically caused by adding additional lay-
ers between the application and the underlying
storage system. We found that this method pro-
vides the fastest method to access the data. Our in-
dexing scheme in conjunction with the underlying
filesystem provides the database system (reposito-
ry) for the server application, which reads the data
at a low resolution from the repository and sends it
to a remote rendering client upon request. After
the user has specified a subvolume or region-of-in-
terest (ROI), the client application sends a new re-
quest to the server to retrieve a subvolume at a
higher level of resolution. This updating procedure
typically takes considerably less time, because
only a small number of files need to be touched.
The initial step, which requires to read the initial
section of every file, i.e., all bricks, can be sped up
by storing an additional file which contains a re-
duced version of the entire data set.

Our new data structure uses considerably less
memory than the original data set, even if the user
chooses lossless compression (see statistics, chap-
ter 6). By choosing appropriate thresholds for
wavelet compression, the user can switch between
lossless compression and extremely high compres-
sion rates. Computing time is balanced by choos-
ing an appropriate filesize (chapter 3).

One of the advantages of this approach is the fact
that the computing time does not so much depend
on the resolution of the subvolume, but merely on

the size of the subvolume. This is because the
higher resolution versions (detail coefficients in
conjunction with the lower resolution versions)
can be retrieved in almost the same time from disk
as the lower resolution version alone. All levels of
detail are stored in the same file, and the content of
several files, which make up the subvolume, usu-
ally fits into main memory. Since seek time is
much higher than read time for conventional hard-
disks, the total time for data retrieval mainly de-
pends on the size of the subvolume, i.e., the
number of f iles that need to be accessed, and not
so much on the level of detail.

3. Filesize considerations

The filesize f for storing the leaves of the octree
structure, which is described in chapter 4, should
be a multiple n of the minimum page size p of the
filesystem. p is typically defined as a system con-
stant in /usr/include/sys/param.h). n
depends on the wavelet compression. If the lowest
resolution of the subvolume requires b bytes, the
next level requires a total of 8 · b bytes (worst
case, uncompressed) and so forth.

We assume that we have a recursion depth r for the
wavelet representation. This gives us 8r · b bytes,
which must fit in f. This means:

Both r and b are user-defined constants. Typical
values are b = 512, which corresponds to an
8 x 8 x 8 subvolume, and r = 3, which gives us
four levels of detail over a range between 512 and
83 ·512 = 262144 data elements, which is more
than 2.7 orders of magnitude.

For optimal performance and in order to avoid
gaps in the allocated files, we can assume that

thus

4. Delimited octree and wavelet structure

The enormous size of the data sets (see chapter 5)
requires to subdivide the data into smaller chunks,
which can be loaded into core memory within a
reasonable amount of time [Hei98, Mey97]. Since
we are extracting subvolumes, it seems quite natu-

f n p⋅ 8r
b⋅≥=

n p⋅ 8r
b,⋅=

n 8r b
p
---.⋅=

VR-based Rendering Techniques for Large-scale Biomedical Data Sets

3

ral to break the data up into smaller bricks. This
can be done recursively by using an octree ap-
proach [Jac80, Mea80, Red78]. Each octant is sub-
divided until we reach an empty region which does
not need to be subdivided any further, or until we
hit the filesize limit f, which means that the current
leaf f its into a file of the given size.

Each leaf contains the full resolution. The memory
reduction occurs by skipping the empty regions.
Typically, the size of the data set shrinks to about
20%, i.e., one fifth of the original size (see chapter 6).

Since we want to access the data set in a hierarchi-
cal fashion, we have to convert the leaves into a
multiresolution representation. This representation
must be chosen in a way that the reconstruction can
be performed most eff iciently with minimal com-
putational effort. Haar wavelets fulfill t hese prop-
erties. They also have the advantage that they can
be easily implemented as integer arithmetic. The
lower resolution is stored at the beginning of the
file, thus avoiding long seek times within the file.

Another very useful property is the fact that a vol-
ume converted into the frequency domain, i.e., the
wavelet representation, requires the exact same
amount of memory as the original representation.
This is also true for all subsequent wavelet recur-
sions.The wavelet recursion terminates when we
have reached a predifined minimum subvolume
size b. The lower bound is the size of a single voxel.

Each octant can be described by a number [Fol96,
Hun79]. We use the following numbering scheme
(figure1): A leaf is uniquely characterized by the
octree recusion depth and the octree path. We limit
the recursion depth to eight, which allows us to en-
code the depth in 3 bits. In order to store the path,
we need 3 bits per recursion step, which gives us
24 bits. 4 bits are spent to encode the depth of the
wavelet recursion. The remaining bit is a flag
which indicates that the file is empty. This pre-
vents us from opening and attempting to read the
file and speeds up the computation. The total num-
ber of bits is 32 (double word).

Each bit group can be easily converted into an
ASCII character by using binary arithmetic, e.g.,
(OCT_DEPTH >> 29) | 0x30) would encode

the octree depth as an ASCII digit. By appending
these characters we can generate a unique filena-
me for each leaf.

In order to retrieve a subvolume, we have to find
the file(s) in which it is stored. We start with the
lower left front corner and identify the subvoxel by
recursive binary subdivision of the bounding box
for each direction. Each decision gives us one bit of
the subvolume path information. We convert these
bits into ASCII characters, using the same macros
as above. The first file we are looking for is
7xxxxxxxx??, where the ’x’s describe the path,
and ’?’ is a wildcard. If this file does not exist, we
keep looking for 6xxxxxxx???, and so forth, un-
til we find an existing leaf. If the filename indicates
that the file is empty (last digit), we can skip the
file. The filename also indicates how many levels
of detail we have available for a particular leaf.
This allows us to scale the rendering algorithm. In
order to retrieve the rest of the subvolume, we must
repeat this procedure for the neighboring leaves.
The number of iterations depends on the recusion
depth and therefore on the size of the leaves found.
The algorithm terminates when all files have been
retrieved so that the subvolume is complete.

5. Applications

Our test applications include molecular biology,
medicine, and earthquake simulation. Our proto-
type for the biomedical field was designed to sup-
port three-dimensional visualization of a human
brain, which allows us to study details by moving
tools, such as an arbitrary cutting plane and vari-
ously shaped lenses, across the data set. The vari-
ous data sets are typically between 20 MB and
76 GB, which makes them impossible to transfer
over the internet in real time. The rendering client
operates independently from the size of the data
set and requests only as much data as can be dis-
played and handled by the Java applet.

6. Statistics

Table 1 shows the reduction of memory which is
required to store a large data set, if we use an oc-
tree at two different levels. The column on the
right represents the original data set. The wavelet
decomposition takes about 0.07 sec for a 643 data
set, and 68 sec for a 10243 data set. The recon-

3
oct.depth

3
sub 1

3
sub 8

4
wav.depth

1
e m p ty

. . .

VR-based Rendering Techniques for Large-scale Biomedical Data Sets

4

struction can be done more efficiently and usually
takes about 30% of the time (measurements based
on an R12000 processor). For the above data we
assume lossless wavelet decomposition. RLE or
other (lossy) compression/decompression algo-
rithms take an additional amount of time and will
be implemented in a later version. We wil l choose
algorithms with asymmetric behavior, i.e., com-
pression time is higher than decompression time.

7. Conclusions

We have presented an efficient numbering scheme
and access method for hierarchical storage of sub-
volumes on a regular filesystem. This method al-
lows us to access a region-of-interest as a set of
bricks at various resolutions. The simplicity of the
method makes it easy to implement. The algorithm
easily scales by increasing word length and filena-
me length. Future work includes better wavelet
compression schemes and time-variant data sets.

We are currently working on the integration, adap-
tation and evaluation of these tools in the National
Partnership for Advanced Computational Infra-
structure (NPACI) framework. Integration of San
Diego Supercomputer Center's High-performance
Storage System (HPSS) as a data repository to re-
trieve large-scale data sets, accessing the data via
NPACI's Scalable Visualization Toolkits (also
known as VisTools), and evaluation of particular
applets with NPACI partners, are main goals for
future research efforts.

Acknowledgements

NSF (CAREER Awards: ACI 9624034, ACI 9983641, LSSDSV:
ACI 9982251, NPACI); Off ice of Naval Research (ONR, N00014-
97-1-0222); Army Research Office (ARO 36598-MA-RIP); NASA
Ames Research Center (NAG2-1216); LLNL (ASCI ASAP Level-2,
B347878, B503159); NATO (CRG.971628); ALSTOM Schilling
Robotics; Chevron; Silicon Graphics, Inc.; ST Microelectronics, Inc.;
Data sets courtesy of Arthur W. Toga, UCLA School of Medicine,
Arthur J. Olson, The Scripps Institute, and Edward G. Jones, Neuro-
science Center, UC Davis.

References

[Hei98] Heiming, Carsten, “Raumunterteilung von Volumendaten,”
thesis, Department of Computer Science, University of Kaiserslau-
tern, Germany, January 1998.

[Hun79] Hunter, G. M.; Steigli tz, K., “Operations on Images Using
Quad Trees,” IEEE Trans. Pattern Anal. Mach. Intell., 1(2), April
1979, 145–154.

[Jac80] Jackins, C.; Tanimoto, S. L., “Oct-Trees and Their Use in
Representing Three-Dimensional Objects,” CGIP, 14(3), November
1980, 249–270.

[Mea80] Meagher, D., “Octree Encoding: A New Technique for the
Representation, Manipulation, and Display of Arbitrary 3-D Objects
by Computer,” Technical Report IPL-TR-80-111, Image Processing
Laboratory, Rensselaer Polytechnic Institute, Troy, NY, October
1980.

[Mey97] Meyer, Jörg; Gelder, Steffen; Heiming, Carsten; Hagen,
Hans, “ Interactive Rendering—A Time-Based Approach,” SIAM
Conference on Geometric Design ’97, Nashville, TN, November 3–
6, 1997, 23.

[Red78] Reddy, D.; Rubin, S., “Representation of Three-Dimension-
al Objects,” CMU-CS-78-113, Computer Science Department, Carn-
egie-Mellon University, Pittsburgh, PA, 1978.

[Sch97] Schneider, Timna Esther, “Multiresolution-Darstellung von
2D-Schichtdaten in der medizinischen Bildverarbeitung,” thesis; De-
partment of Computer Science, University of Kaiserslautern, Germa-
ny, December 1997.

Tab. 1: Space subdivision algorithm

Data type MRI CT MRI CT

Pre-processing 56 63 98 97

Depth 4 4 5 5

Memory

3.
99

6.
52

6

3.
83

1.
48

8

2.
35

8.
44

2

3.
29

9.
51

6

14
.8

11
.1

36

14
.5

48
.9

92

14
.8

11
.1

36

14
.5

48
.9

92

5.
41

2.
61

0

Algorithm
level 2level 1

Octree

Fig. 1: Numbering scheme

010

000 001

101100

110 111

011

b3b2b1

b3
b2

b10

111 110 101 100 011 010 001 000

