
Web-based Rendering Techniques for
Large-scale Biomedical Data Sets

Joerg Meyer
NSF-Engineering Research Center (ERC), Mississippi State University

2 Research Blvd., Starkville, MS 39762-9627
jmeyer@cs.msstate.edu

Ragnar Borg, Bernd Hamann, Kenneth I. Joy

Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science - University of California - One Shields Ave.

Davis, CA 95616-8562
Ragnar.Borg@proxycom.no, hamann@cs.ucdavis.edu, joy@cs.ucdavis.edu

Arthur J. Olson

The Scripps Research Institute
10550 North Torrey Pines Road - La Jolla, CA 92037

olson@scripps.edu

Abstract

Large volumetric data sets are usually stored as file sets, where
each individual file represents an orthogonal cross-section.
Interactive rendering of large data sets requires fast access to
user-defined parts of the data, because it is virtually impossible to
render the entire data set at full resolution. Therefore,
hierarchical rendering techniques have been introduced to render
a region-of-interest at a higher resolution than the rest of the
data. Lower levels of detail are provided as context information.
We present a dynamic subdivision scheme, which incorporates
space subdivision and wavelet compression.

1 Introduction

Real-color volume data sets can be obtained by taking photographs or scanning
cross-sections of objects. These objects are typically in a frozen state (cryo-
sections). This technique produces high resolution image data in real-color. The
resolution is only limited by the camera or the imaging device, and not so much by
principal limitations of the scanning device, because there is no complex matrix
transformation required to obtain 2D image data, as it is necessary for CT or MRI.

Therefore, real-color volume data sets tend to be much more voluminous than CT
or MRI imagery.

In order to make a data set available on a visualization server and transmit the
data progressively to a rendering client, we need to compactify the data set and
break it down into smaller bricks. The order of transmission and the size or
resolution of the bricks is determined and driven by the client application. Our
system uses a Windows NT-based server system which is both data repository and
content provider for shared rendering applications. The client accesses the server
via a web-based interface.

The client selects a data set and sends a request to the server. The server ana-
lyzes and interprets the request and returns a customized Java applet together with
an appropriate representation of the data set. The Java applet is optimized for a
specific rendering task. This means that the rendering algorithm is tailored for a
particular problem set. This keeps the applet small and avoids additional overhead
and testing for different cases. The initial data set is also small. It is refined later
upon additional requests by the client. Bricks of different sizes and different
resolutions might be requested from the server. We present a method that combines
dynamic space subdivision algorithms, such as adaptive octrees for volumes,
wavelet-based data representation, and progressive data transmission for
hierarchically stored volume data sets.

2 Indexing scheme

Original data are usually structured as sets of files, which represent a series of 2-D
cross-sections. By arranging all slices in a linear array, we obtain a 3-D volume.
Unfortunately, when accessing the data, in most cases we do not make use of the
implicit coherency across single slices. This coherency is only useful for extraction
of cross-sections perpendicular to the scanning direction, i. e., within a single
image plane. Instead, in most cases we need brick-like coherency within
subvolumes. Therefore, we present a new datastructure, which uses a combination
of delimited octree space subdivision and wavelet compression techniques to
achieve better performance.

We present an efficient indexing scheme, an adaptive data reduction method,
and an efficient compression scheme. All techniques are based on integer
arithmetic and are optimized for speed. Binary bit operations allow for memory
efficient storage and access.

We use a standard filesystem (Unix or FAT32) to store our derived
datastructures, and we use filenames as keys to the database. This way we can avoid
additional overhead, which is typically caused by inserting additional access layers
between the application and the underlying storage system. We found that this
method provides the fastest method to access the data. Our indexing scheme in
conjunction with the underlying filesystem provides the database system (reposito-
ry) for the server application, which reads the data from the repository and sends it
to a remote rendering client upon request. Initially, a low resolution representation

is requested from the repository and rendered on the client side. This coarse
representation provides context cues and sufficient information for initial
navigation. After the user has specified a subvolume or region-of-interest (ROI),
the client application sends a new request to the server to retrieve a subvolume at a
higher level of detail. When using the data structures described below, this
updating procedure typically takes considerably less time compared to the single-
slice representation, because a smaller number of files needs to be touched. The
initial step, which requires reading the initial section of every file, i.e., all bricks,
can be sped up by storing an additional file which contains a reduced version of the
entire data set.

3 Storage scheme

The filesize f for storing the leaves of the octree structure should be a multiple n of
the minimum page size p of the filesystem. p is typically defined as a system con-
stant in /usr/include/sys/param.h). n depends on the wavelet
compression, which is described below. If the lowest resolution of the subvolume
requires b bytes, the next level requires a total of 8 · b bytes (worst case,
uncompressed), and so forth.

We assume that we have a recursion depth r for the wavelet representation.
This gives us 8r · b bytes, which must fit in f. This means:

bpnf r ⋅≥⋅= 8 (1)

Both r and b are user-defined constants. Typical values are b = 512, which
corresponds to an 8 x 8 x 8 subvolume, and r = 3, which gives us four levels of
detail over a range between 80 · 512 = 512 and 83 · 512 = 262144 data elements,
which is more than 2.7 orders of magnitude.

For optimal performance and in order to avoid gaps in the allocated files, we
can assume that

bpn r ⋅=⋅ 8 , (2)

thus

p

b
n r ⋅= 8 . (3)

The enormous size of the data sets (see chapter 4) requires that the data is
subdivided into smaller chunks, which can be loaded into core memory within a
reasonable amount of time [1, 5]. Since we are extracting subvolumes, it seems
quite natural to break the data up into smaller bricks. This can be done recursively

using an octree method [3, 4, 7]. Each octant is subdivided until we reach an empty
region which does not need to be subdivided any further, or until we hit the filesize
limit f, which means that the current leaf fits into a file of the given size.

Each leaf contains the full resolution. Memory space is reduced by skipping
empty regions. Typically, the size of the data set shrinks to about 20%, i.e., one
fifth of the original size (see chapter 5).

Since we want to access the data set in a hierarchical fashion, we have to
convert the leaves into a multiresolution representation. This representation must
be chosen in a way that the reconstruction can be performed most efficiently with
minimal computational effort [8]. Haar wavelets fulfill these properties. They also
have the advantage that they can be easily implemented as integer arithmetic. The
lowest resolution (figure 1, lower right) is stored at the beginning of the file, thus
avoiding long seek times within the file.

n = 5 n = 4 n = 3 n = 2

original (256 x 256) n = 8 n = 7 n = 6

Figure 1. Haar wavelet compression scheme (2-D)

For the wavelet representation, we associate each subvolume with a vector space V,
which consists of a set of piecewise linear functions. V0 is associated with a
constant function, which is defined over the domain [0, 1[, and describes a single
pixel. Vi consists of 2i intervals, with a constant function defined on each of these
intervals [6]. All vector spaces are subsets of each other:

0
1 , NIiVV ii ∈⊂ + (4)

We choose the following basis functions for Vi:

{ }12,,0),2()(, −∈−= ii
ji jjxx Kφφ with



 <≤

=
else0

10if1
)(

x
xφ (5)

Figure 2 shows the basis functions, also called scaling functions.

0 1/4 1/2 3/4 1

1

0

φ22

0 1/4 1/2 3/4 1

1

0

φ00

0 1/4 1/2 3/4 1

1

0

φ2 1

0 1/4 1/2 3/4 1

1

0

φ23

V2

0 1/4 1/2 3/4 1

1

0

φ11

0 1/4 1/2 3/4 1

1

0

φ1 0
V

1

0 1/ 4 1/2 3/4 1

1

0

φ2 0

V0

V∞ • • •

Figure 2. Wavelet transformation: scaling functions

We define another vector space Wi, which comprises all functions of Vi+1, and
which is orthogonal to all functions in Vi. These basis functions, which span Wi, are
the Haar wavelets:

{ }12,,0),2()(, −∈−= ii
ji jjxx Kψψ with














<≤−

<≤

=

 else0

1
2

1
if1

2

1
0if1

)(x

x

xψ (6)

Figure 3 shows these basis functions.

1

0

ψ11

0 1/4 1/ 2 3/4 1

-1

0 1/4 1/2 3/4 1

1

0

ψ 0 0

1

0

ψ10

W
1

W0

W∞ • • •

-1

0 1/4 1/2 3/4 1

-1

∪ V 1

∪ V
2

Figure 3. Haar wavelet basis functions

A discrete signal in Vi+1 can be represented as a linear combination of the basis
functions from V0 and W0 ... Wi.

We can describe the original image I as follows (pixel data: 0, NIili ∈):

∑
= −−

⋅=
n

i
i

ni xlxI
1 1,1

2

)()(φ (7)

After the first transformation, we obtain:

∑ ∑
= = −−−−

⋅+⋅=
2/

1

2/

1 1,2
2

1,2
2

)(')(')(
n

i

n

i
i

ni
i

ni xcxlxI ψφ (8)

where the first sum represents the reduced image, while the second sum comprises
the detail coefficients.

Now we lift this scheme to the three-dimensional case. A simple solution
would be an enumeration of all grid points, e. g., row by row and slice by slice, in a
linear chain, so that we can still apply our one-dimensional algorithm (standard
decomposition). This of course would reduce the data set only by a factor of 2,
instead of 23 = 8. Thus we apply the algorithm alternatively to each dimension.
Figure 4 shows the method for the two-dimensional case [8].

I HR IL RI

H
C

H
RI

L
C

H
RI

H
C

L
R I

L
C

L
RI

.. . .
..

LR/L C : low pass filter on rows / colum ns
HR/HC : high pass filter on rows / colum ns

I: Image

Figure 4. Wavelet compression scheme

First, all rows of the original image I are decomposed into a low-pass filtered image
LRI (reduced image) and the high-pass filtered components HRI (detail coefficients).
For the next transformation, the algorithm is applied to the columns, which results
in LCLRI, HCLRI, LCHRI, and HCHRI (prefix notation). The same technique can be
used for three dimensions.

After each cycle, we end up with a reduced image in the upper left corner.
Subsequently, the algorithm is only applied to this quadrant (see figure 5). The
algorithm terminates if the size of this quadrant is one pixel in each dimension.

I

L
C

L
R

L
C

H
R

H
C
L

R
H

C
H

R

LC

L
C

H
R

H
C

L
R

H
C

H
R

LC

HCHC

L
C

L
R

HRLR

L
R

H
R

Figure 5. Wavelet compression: memory management

This method of alternating between dimensions is known as non-standard
decomposition. Figure 1 shows the LCLR components for an MRI scan at different
levels of detail.

A very useful property is the fact that even for lossless compression a volume
converted into the wavelet representation requires the exact same amount of
memory as the original representation. Since many coeeficients are relatively small,
the number of different discrete values is also small, provided we use integer
arithmetic. Extremely small values can be neglected in order to obtain better
compression rates (lossy compression). We use a simple run-length encoding (RLE)
scheme, which turns out to be efficient, especially for small brick sizes b, and it

allows for easy decoding. The space requirement (lossless compression) is the same
for all subsequent wavelet recursions, i. e., for all levels of detail. The wavelet
algorithm terminates when it reaches a predifined minimum subvolume size b. The
lower bound is the size of a single voxel.

010

000 001

101100

110 111

011

b
3
b

2
b

1

b
3

b
2

b
10

111 110 101 100 011 010 001 000

Figure 6. Numbering scheme

Each octant can be described by a number [2]. We use the following numbering
scheme (figure 6): A leaf is uniquely characterized by the octree recusion depth and
the octree path. We limit the recursion depth to eight, which allows us to encode
the depth in 3 bits. In order to store the path, we need 3 bits per recursion step,
which gives us 24 bits. 4 bits are spent to encode the depth of the wavelet recursion.
The remaining bit is a flag which indicates if the file is empty or not. This prevents
us from opening and attempting to read the file and speeds up the computation.
The total number of bits is 32 (double word).

3
oc t.depth

3
sub 1

3
sub 8

4
wav.depth

1
empty

. . .

Figure 7. Tree encoding

Each bit group can be easily converted into an ASCII character by using binary
arithmetic, e.g., (OCT_DEPTH >> 29) | 0x30) would encode the octree depth as
an ASCII digit. By appending these characters we can generate a unique filename
for each leaf.

In order to retrieve a subvolume, we have to find the file(s) in which the
corresponding parts are stored. We start with the lower left front corner and
identify the subvoxel by recursive binary subdivision of the bounding box for each
direction. Each decision gives us one bit of the subvolume path information. We
convert these bits into ASCII characters, using the same macros as above. The first
file we are looking for is 7xxxxxxxx??, where the ’x’s describe the path, and ’?’
is a wildcard. If this file does not exist, we keep looking for 6xxxxxxx???, and
so forth, until we find an existing leaf. If the filename indicates that the file is

empty (last digit), we can skip the file. The filename also indicates how many
levels of detail we have available for a particular leaf. This allows us to scale the
rendering algorithm. In order to retrieve the rest of the subvolume, we must repeat
this procedure for the neighboring leaves. The number of iterations depends on the
recusion depth and therefore on the size of the leaves found. The algorithm
terminates when all files have been retrieved so that the subvolume is complete.

4 Results

Our test application focusses on biomedical imaging. A prototype was designed to
support three-dimensional visualization of a human brain, which allows us to study
details by moving tools, such as an arbitrary cutting plane and variously shaped
lenses, across the data set. The various data sets are typically between 20 MB and
76 GB, which makes them impossible to transfer over the internet in real time. The
rendering client operates independently from the size of the data set and requests
only as much data as can be displayed and handled by the Java applet.

Figure 8. Prototype implementation

The web-based user interface combines HTML-form-driven server requests with
customized Java applets, which are transmitted by the server to accomplish a
particular rendering task.

Our prototype implementation (figure 8) features 2-D/3-D preview capability;
interactive cutting planes (in a 3-D rendering, with hierarchical isosurface models
to provide context information); a lens paradigm to examine a particular region-of-
interest (variable magnification and lens shape, interactively modifiable ROI); etc.
Complex scenes can be precomputed on the server side and transmitted as a
VRML2 file to the client so that the client can render the scene, and the user can
interact with it in real-time.

5 Comparison

Our new data structure uses considerably less memory than the original data set,
even if we choose lossless compression. By selecting appropriate thresholds for the
wavelet compression algorithm, we can switch between lossless compression and
extremely high compression rates. Computing time is balanced by choosing an
appropriate filesize (chapter 3).

One of the advantages of this approach is the fact that the computing time does
not so much depend on the resolution of the subvolume, but merely on the size of
the subvolume, i. e., the region-of-interest. This is because the higher resolution
versions (detail coefficients in conjunction with the lower resolution versions) can
be retrieved in almost the same time from disk as the lower resolution version
alone. All levels of detail are stored in the same file, and the content of several
files, which make up the subvolume, usually fits into main memory. Since seek
time is much higher than read time for conventional harddisks, the total time for
data retrieval mainly depends on the size of the subvolume, i. e., the number of files
that need to be accessed, and not so much on the level of detail.

Table 1. Space subdivision algorithm

Table 1 shows the reduction in the amount of memory required to store a large data
set, if we use an octree at two different levels. The column on the right represents
the original data set. The wavelet decomposition takes about 0.07 sec for a 643 data
set, and 68 sec for a 10243 data set. The reconstruction can be done more efficiently
and usually takes about 30% of the time (measurements based on an R12000
processor). For the above data we assume lossless wavelet decomposition. RLE or
other (lossy) compression/decompression algorithms take an additional amount of
time, but this is negligible compared to data transmission time.

6 Conclusions

We have presented an efficient numbering scheme and access method for
hierarchical storage of subvolumes on a regular filesystem. This method allows us
to access a region-of-interest as a set of bricks at various lvels of detail. The
simplicity of the method makes it easy to implement. The algorithm is scalable by
increasing word length and filename length. Future work includes better wavelet
compression schemes, lossy compression techniques, and time-variant data sets.

We are currently working on the integration, adaptation and evaluation of
these tools in the National Partnership for Advanced Computational Infrastructure
(NPACI) framework. Future research efforts include integration of San Diego
Supercomputer Center's High-performance Storage System (HPSS) as a data
repository to retrieve large-scale data sets, and accessing the data via NPACI's
Scalable Visualization Toolkits (also known as VisTools).

Acknowledgements

Data sets courtesy of Arthur W. Toga, UCLA School of Medicine. Thanks to Bernd
Hamann, Kenneth I. Joy, Kwan-Liu Ma, Ikuko Takanashi, Ragnar Borg, Eric B.
Lum, UC Davis; Arthur J. Olson, The Scripps Institute; and Edward G. Jones,
Neuroscience Center, UC Davis.

References

1. Heiming, Carsten, “Raumunterteilung von Volumendaten,” thesis, Department

of Computer Science, University of Kaiserslautern, Germany, January 1998.
2. Hunter, G. M.; Steiglitz, K., “Operations on Images Using Quad Trees,” IEEE

Trans. Pattern Anal. Mach. Intell., 1(2), April 1979, 145–154.
3. Jackins, C.; Tanimoto, S. L., “Oct-Trees and Their Use in Representing Three-

Dimensional Objects,” CGIP, 14(3), November 1980, 249–270.
4. Meagher, D., “Octree Encoding: A New Technique for the Representation,

Manipulation, and Display of Arbitrary 3-D Objects by Computer,” Technical
Report IPL-TR-80-111, Image Processing Laboratory, Rensselaer Polytechnic
Institute, Troy, NY, October 1980.

5. Meyer, Joerg; Gelder, Steffen; Heiming, Carsten; Hagen, Hans, “Interactive
Rendering—A Time-Based Approach,” SIAM Conference on Geometric
Design ’97, Nashville, TN, November 3– 6, 1997, 23.

6. Meyer, Joerg, “Interactive Visualization of Medical and Biological Data Sets,”
Ph. D. thesis; Shaker Verlag, Germany, 1999.

7. Reddy, D.; Rubin, S., “Representation of Three-Dimensional Objects,” CMU-
CS-78-113, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA, 1978.

8. Schneider, Timna Esther, “Multiresolution-Darstellung von 2D-Schichtdaten in
der medizinischen Bildverarbeitung,” thesis; Department of Computer Science,
University of Kaiserslautern, Germany, December 1997.

