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Abstract 
 
Multi-dimensional, regular, structured grids can be represented in the form of hyper-
cubes, i.e., vector-valued meshes of multiple dimensions. Volumetric data sets and time-
varying volumetric data sets, as they occur in medical or geo-spatial applications, are 
special three- and four-dimensional cases. The storage space requirements of such higher-
dimensional data sets can be quite significant. In order to store and access such data sets 
efficiently, the spatial or temporal coherence in each dimension must be analyzed and 
utilized.  
 
Introduction  
 
Structured grids are generated in many areas of simulation, for example, in finite element 
simulations or in field simulations. Structured grids also occur in medical applications, 
such as volumetric scans. Especially in medical scans, grids are usually regular and 
recently became multi-dimensional (multiple scan values or gradient- and tensor-based 
methods). Due to the complexity of such multi-dimensional, regular, structured grids, 
real-time image processing, storage, transmission and rendering become more 
challenging. 
 
We present a novel technique for efficient compression, storage and access of multi-
dimensional, regular, hyper-cube grids using wavelet-based decomposition and 
reconstruction methods. Due to their potential for an efficient implementation using 
integer arithmetic, Haar wavelets are employed by this algorithm. The method is 
asymmetric, which means that conversion of the data set into a wavelet representation 
and data compression have a higher complexity and therefore take more time than 
uncompressing and reconstructing the data. This is a desired property in many rendering 
applications. 
 
It will be shown how the algorithm can be easily extended to higher-dimensional or 
vector-valued data sets. The algorithm becomes more efficient with increasing 



dimensions, because the spatial or temporal coherence within each dimension contributes 
to the data reduction in the wavelet representation and the compression step. 
The method is suitable for interactive rendering applications, because it enables fast 
extraction of low-frequency subsets, which can be rendered as low-resolution preview 
images. By preserving the spatial and temporal information of the data even during the 
compression step, the method also allows for gradual refinement of subvolumes or the 
entire data set, and instant multi-resolution region-of-interest selection, gradient 
extraction, slicing, cutting and down-projection. 
 
Wavelet Decomposition for Hypercubic Meshes 
 
Since we want to access the data set in a hierarchical fashion, we have to convert it into a 
multiresolution representation. This representation must be chosen in a way that the 
reconstruction can be performed most efficiently with minimal computational effort [1]. 
Haar wavelets fulfill these properties. They also have the advantage that they can be 
easily implemented as integer arithmetic. The Haar Wavelet scheme is described in [2] 
and shown in figure 1 (n indicates the compression level as a power of two). 

 
Figure 1. Haar wavelet compression scheme (2-D). 

 
 
Hypercubes  
 
The wavelet scheme can be easily extended into higher dimensions. One complete pass of 
the non-standard decomposition scheme comprises of iteration through all spatial 
dimensions. In the 2-D case shown in figure 1, the decomposition is first executed in the 
x direction, and then in the y direction. For higher-dimensional cases, the cycle must be 
completed for all dimensions before moving on to the next level of detail. 



 
For vector-valued data, each vector component is simply treated as a separate dimension 
of the data set. Spatial coherency can only be obtained when applying the non-standard 
decomposition scheme sequentially for each dimension. 
 
Similar wavelet schemes have been developed for tetrahedral meshes, and the scheme 
works in a similar way. 
 
An additional complication arises when the temporal domain is taken into account. The 
following method shows how the temporal dimension can be treated in the same way as a 
spatial dimension. 
 
Time-varying Tetrahedral Mesh Decimation  
 
Extremely high decimation rates can be obtained by taking the temporal domain into 
account. Instead of tetrahedra, we consider a mesh of hypertetrahedra that consists of 
tetrahedra that are connected across the temporal domain (figure 2). 
 

 
 

Figure 2. Hypertetrahedron. 
 
We define a hypertetrahedron as a set of at least two (possibly more) tetrahedra where all 
four vertices are connected in the time domain. Intuitively, a hypertetrahedron represents 
a tetrahedron that changes shape over time. Every time step represents a snapshot of the 
current shape. Without loss of generality, we can assume that the time domain is a linear 
extension of a three-dimensional Cartesian coordinate system. As a consequence, we 
connect corresponding vertices with linear, i.e. straight, line segments that indicate the 
motion of a vertex between two or more discrete time steps. Since many tetrahedra do not 
change significantly over time, hypertetrahedra can be collapsed both in the temporal 
domain as well as in the spatial domain. 
 
This results in hypertetrahedra that are either stretched in space or in time. Mesh 
decimation in time means that a hypertetrahedron (4-D) that does not change over time 
can be represented by a simple tetrahedron (3-D), just like a tetrahedron can be 
represented by a single point. The opposite direction (expansion of a tetrahedron to a 



hypertetrahedron over time) is not necessary, because a hypertetrahedron is collapsed 
only if it does not change significantly in a later time step. 
 
The latter of the previously mentioned cases turns out to restrict the decimation ratio 
significantly. Since we do not allow hypertetrahedron expansion from a tetrahedron (split 
in the temporal domain), a large potential for decimation is wasted. Also, for practical 
purposes the given approach is not very suitable, because we need to be able to access the 
position of each vertex in the mesh at every time step if we want to navigate in both 
directions in the temporal domain. The reconstruction of this information and navigation 
in time with VCR-like controls requires a global view of the data. This means that the 
data cannot be processed sequentially for an infinite number of time steps. Consequently, 
the algorithm is not scalable. 

 
 

Figure 3. One affected node, two affected tetrahedra. 
 



Figure 3 shows an example where one node is affected by a velocity vector. The velocity 
is proportional to the displacement, because all time steps have the same temporal 
distance. Therefore, the arrow indicates the position of the node in the next time step. 
Two tetrahedra are affected by this displacement and change over time. In this example, 
it would be sufficient to store the time history of the affected node (solid line) or the 
affected tetrahedra (dotted lines). In order to reconstruct the mesh, it would be necessary 
to search for the most recent change in the time history of each node, which would 
require keeping all time histories of all nodes in memory during playback. This becomes 
particularly obvious if forward and backward navigation in time is considered. 
 
Even though this method offers a very compact representation of a time-varying 
tetrahedral mesh, we propose a different approach that enables easier playback (forward 
and backward) of all the time steps in a simulation. The standard method would be to 
decimate the mesh for each time step separately by applying QTetFusion [3] or some 
other mesh decimation technique. However, this approach would result in different 
meshes for every time step, leading to 'jumps' and flicker in the visualization. This would 
be very disruptive in an animation or on a virtual reality display. 
 
Therefore, we use a different approach. The idea is to preserve every time step, which is 
necessary for playback as an animation and for navigation in time. The mesh that has the 
greatest distortion due to the earthquake (the velocity vector values associated with each 
grid node) is identified, and then decimated. All the decimation steps that were necessary 
to reduce the complexity of this mesh are recorded. For the record, it is sufficient to store 
the IDs of the affected tetrahedra in a list, because for the given application the IDs of the 
tetrahedra are identical in all time steps. Since tetrahedra are only removed but never 
added, the IDs are always unique. These recorded steps are then used to guide the 
decimation of the remaining meshes, i.e., the meshes of the other time steps are 
decimated in the exact same manner as the one whose features are supposed to be 
preserved. 
 
Figure 4 shows that the decimation of t0 and t1 is guided by t2, because t2 is more distorted 
than any of the others. The decimated mesh should represent all displaced nodes in the 
most accurate way, because these are the ones that represent the significant features in the 
given application. Isotropic regions, i.e., areas that are not affected by the earthquake, 
such as the three tetrahedra at the top that are simplified into a single tetrahedron, expose 
only little variance in the data attributes, and consequently do not need to be represented 
as accurately, i.e., with the same error margin, as the significantly changing feature nodes 
in the other time steps. Comparing the top scenario (before decimation) and the bottom 
scenario (after decimation), the image shows that the tetrahedra on the top that were 
simplified in the selected t2 time step are also simplified in the other two time steps (t0 
and t1). 
 



The question that remains is how to identify this 'most distorted' mesh. Instead of using 
complex criteria, such as curvature (topology preservation) and vector gradients (node 
value preservation), we simply divide the length of the displacement vector for each node 
by the average displacement of that node, calculate the sum of all these ratios, and find 
the mesh that has the maximum sum, i.e., the maximum activity. If there is more than one 
mesh with this property, we use the one with the smallest time index. The average 
activity of a node is the sum of all displacement vector lengths for all time steps divided 
by the number of time steps. This means that we consider those nodes in the mesh that 
expose a lot of activity, and try to represent the mesh that contains these active nodes in 
the best possible way. The mesh decimation algorithm is applied only to this one mesh. 
All other meshes are decimated according to this guiding mesh, using the same node 
indices for the collapse sequence. 

 
 

Figure 4. Preservation of temporal resolution, decimation guided by t2. 



Summary 
 
We have shown that wavelet decomposition and tetrahedral mesh decimation can be used 
in higher-dimensional data sets. In general, the compression ratio obtained after 
transforming the data set into the given representation is higher than for the original data 
set. 
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