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Abstract— We present a systematic technique for extraction
of useful information from large-scale neural data in the context
of brain-computer interfaces. The technique is based on a
direct linear discriminant analysis, recently developed for face
recognition problems. We show that this technique is capable of
extracting useful information from brain data in a systematic
fashion and can serve as a general analytical tool for other
types of biomedical data, such as images and collections of
images (movies). The performance of the method is tested on
intracranial electroencephalographic data recorded from the
human brain.

I. INTRODUCTION
A. Brain-Computer Interfaces

A brain-computer interface (BCI) is a set of communica-
tion and control devices and algorithms that allow the inter-
action of a patient with its environment without generating
any motor output [1], [2]. While the major application of
BCIs is to assist disabled individuals by using neural activity
from the brain to control prosthetic devices (computers,
robots, autonomous vehicles, etc.), BCIs play an increasingly
important role as a tool for studying brain mechanisms and
testing new hypotheses about brain function.

Depending on the type of neural signals and underlying
recording technology, BCIs can be classified as invasive
and non-invasive. Invasive BCIs use arrays of electrodes
implanted in the brain to record action potentials of single
cortical neurons [3], [4], [5], or local field potentials (i.e. the
composite extracellular potential from hundreds or thousands
of neurons) [6], [7]. Non-invasive BCI techniques rely on
electroencephalographic (EEG) signals, recorded from the
surface of the scalp [2], [8].

The ultimate goal of any BCI is to decode in real time
information contained in neural signals, and to use this
information for the control of assistive devices, such as
computers or robots. Typically, the decoding is facilitated
by recording neural correlates of movement intentions or
hand trajectories, and by accumulating sufficient data over
multiple trials into a training database. Future data can then
be compared against the training database, and the intended
movements or trajectories are decoded.

B. Feature Extraction

Brain signals arising in BCI applications are typically
spatio-temporal and large-dimensional. While abundance of
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neural data is ultimately important for decoding, not all data
samples carry useful information for the task at hand. Ideally,
relevant data samples should be combined into meaning-
ful features, while irrelevant data should be discarded as
noise. This dimensionality reduction procedure is commonly
referred to as feature extraction. An obvious benefit of
feature extraction is that data becomes computationally more
manageable. More importantly, the statistical properties of
data can be more accurately estimated in the low-dimensional
feature space. This is especially important under the small
sample size conditions [9], common to many BCI applica-
tions, where the dimension of data, p, exceeds the number
of examples, nt , in the training database.

Current approaches to feature extraction from neural data
are largely heuristic and rely heavily on off-the-shelf signal
processing tools. For example, the use of spectral power
of EEG signals in various frequency bands, e.g. µ-band
or β -band [10], [11], can be viewed as a heuristic way
of extracting features from data. While spectral features
have clear physical interpretation, there is no evidence that
they are optimal features for decoding. A common approach
to processing of spatio-temporal neural signals is a two-
step procedure: data is first processed spatially, typically by
applying off-the-shelf tools such as the Laplacian filter [8],
[10], followed by temporal processing such as autoregressive
frequency analysis [8], [11]. However, the assumption of
space-time separability is not justified and may be respon-
sible for suboptimal performance. In addition, many of the
heuristic strategies attempt to rank individual (scalar) features
according to some criterion, and then construct the feature
vector by a concatenation of the several most significant
features. The major shortcoming of this approach is that the
joint statistical properties of the features are not accounted
for, which may produce suboptimal feature vectors.

In this article, we present a feature extraction technique
suitable for BCI applications under the small sample size
conditions. The method is based on a variant of linear
discriminant analysis (LDA), called direct LDA [12]. The
technique is computationally efficient (linear), and extracts
features by utilizing their joint statistical properties. In addi-
tion, when applied to spatio-temporal signals, the technique
does not need the space-time separability assumption.

II. DIRECT LDA APPROACH

A. Background

LDA is perhaps the most widely used feature extraction
technique. The objective of LDA is to perform dimensional-
ity reduction while enhancing class separability, normally by



maximizing an objective function. The most popular form of
LDA relies on the maximization of the Fisher criterion [13]:

J(T ) = arg max
T∈Rm×p

|T SbT T |
|T SwT T |

(1)

where Sb and Sw represent between-class and within-class
scatter matrix [14]. However, for large-scale data, the tradi-
tional LDA approach faces a couple of challenges. Firstly,
large-scale data is associated with large covariance matrices
which are difficult to store and manipulate. Secondly, large-
scale data inevitably leads to the small sample size conditions
(p > nt ) and singular scatter matrix Sw, and so the classical
solution to (1) based on the eigenvalue/eigenvector decom-
position of S−1

w Sb [14], is not directly applicable.
There have been several research efforts to solve the small

sample size problem using variants of LDA (see [15] for
review). Recently, Yu and Yang [12] developed a novel
direct LDA (DLDA) algorithm for high-dimensional data.
The algorithm discards the null space of Sb by means of
eigenanalysis, followed by a simultaneous diagonalization
of Sw and Sb in the remaining subspace. Since rank(Sb) ≤
c− 1, where c is the number of classes, it follows that the
dimension of the feature space, m, is at most c−1. Formally,
the algorithm finds a matrix A ∈ Rq×p (q� p) such that

ASbAT = I, ASwAT = Λw, (2)

where I ∈ Rq×q is an identity matrix and Λw ∈ Rq×q is a
positive (semi)definite diagonal matrix with elements sorted
in ascending order. The feature extraction matrix T is chosen
as the first m (1≤m≤ q≤ c−1) rows of A. Yu and Yang also
show how to efficiently handle the calculation of A for large-
scale data, and the details can be found in [12]. If analyzed
data represent spatio-temporal signals (written in a vector
form), each row of the feature extraction matrix T can be
viewed as a spatio-temporal filter that maps data into one
component of the feature vector. Note that in this case no
space-time separability assumption is necessary. Also note
that when m ≥ 2, the features are extracted simultaneously,
thereby utilizing their joint statistical properties.

B. Modifications of the Direct LDA Approach

While Yu and Yang report very good performance of
DLDA to face recognition problems, the direct application
of their technique to brain data for BCI (see Section III),
generally yields poor results. The discrepancy in perfor-
mances could be explained by relatively low noise levels
in face recognition problems, compared to very noisy brain
signals. In general, under the small sample size conditions
the empirical covariance matrix is not a good estimate of the
true covariance matrix, as shown in [16]. Inaccurate estimates
of large scale covariance matrices typically lead to erroneous
eigenvalue calculations used in LDA or any variants thereof.
One way to reduce the noise is to improve the estimates
of the covariance matrix by use of shrinkage [16]. In this
article we apply a thresholding approach to get rid of the
noise in the data. Thresholding is used extensively as a
signal denoising technique, especially in conjunction with

wavelet basis functions [17]. The near-zero coefficients of
the spatio-temporal filter T , obtained from DLDA are likely
to be fluctuations due to noise, and conversely, large filter
coefficients are likely to correspond to data attributes that
are informative. Consequently, the near-zero coefficients of
T are shrunk to 0, while the large coefficients are preserved.
This type of thresholding is often referred to as the hard
thresholding rule [17].

For large-scale datasets suffering from “small nt , large
p” problem, where estimated class-covariance matrices are
highly singular, we propose a novel two-pass algorithm
which systematically reduces the singularity of the estimated
covariance matrices by the use of hard thresholding. In
the first pass, we run DLDA [12] on the training dataset
and get the spatio-temporal filter F . The training filter
F gives a good initial guess as to which attributes are
prominent in the p-dimensional data space. In the second
pass, we use hard thresholding on the coefficients of F
to get the feature extraction matrix T which extracts the
spatio-temporal samples of relevance, effectively selecting a
p′-dimensional data subspace which contains most relevant
information. Features are then extracted by DLDA on the
selected subspace, determined by hard thresholding. Both the
optimal threshold value and the performance of a classifier
in the feature space are determined through a leave-one-out
cross-validation (CV).

In applications where prior information is available, the
training filter can be constrained by imposing conditions on
both spatial and temporal domain. For example, if we believe
that only a certain brain area is important for the task at
hand, we can set to 0 the coefficients of the training filter
outside of this area. Examples of spatially and/or temporally
constrained filters will be presented in Section III.

In summary, the first pass of the algorithm gives a global
picture of the data space, which can be treated as a saliency
map [18], [19] for the second pass of the algorithm. Thus
using the two-pass algorithm, the inherent error associated
with the estimated covariance matrices under the small size
conditions is reduced by the systematic selection of the most
informative data subspace.

III. EXPERIMENTAL RESULTS

We illustrate the performances of the DLDA and modified
DLDA methods on a data set adopted from Rizzuto et
al. [20]. The data represents intracranial encephalographic
(iEEG) recordings from the human brain during a standard
memory reach task. At the beginning of each trial a red
fixation stimulus is presented in the middle of a touchscreen
which marks a fixation period. Next, a green target is flashed
on the screen, marking the onset of a target period. After
the target disappears, the subject is asked to plan a reach
movement to the target location without making any eye or
arm movements. This stage of the experiment is referred
to as a delay period. After the delay period, the fixation
stimulus is extinguished, which signals the participant to
reach to the target location. The duration of fixation, target
and delay periods varied uniformly between 1 and 1.3 s.



The subject had several electrodes implanted into each of
the following target brain areas: orbital frontal (OF) cortex,
amygdala (A), hippocampus (H), anterior cingulate (AC)
cortex, supplementary motor (SM) cortex and parietal (P)
cortex. The total number of electrodes in both hemispheres
was 91. The targets were presented at six different locations:
right, top right, top left, left, bottom left and bottom right
position, with respect to the fixation stimulus. The number of
trials per stimulus varied, yielding a total of nt = 438 trials.
The electrode signals were amplified, sampled at 200 Hz and
band-pass filtered. Note that 1 s of data can be represented
as a vector in 18200-dimensional space (p = 91×200). The
goal of our analysis is to decode the target location based
on the brain data alone. Such a method could be used to
decode a person’s motor intentions in real-time, supporting
BCI applications. It should be noted that the iEEG signals
are essentially local field potentials (see Section I-A). All
decoding results are based on the linear classifier. The choice
of classifier did not affect the results significantly, i.e. similar
results were obtained with a quadratic classifier.
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Fig. 1. Training filter F ∈R1×18200 corresponding to the target period on
one of the folds of CV, shown as an image with the coefficients normalized
between -1 and 1.

In the interest of clarity we will concentrate on a subset
of data corresponding to two (out of 6) target locations: left
and right. Consequently, our analysis is confined to a one-
dimensional (1-D) feature space (c = 2, m = 1, see Section II-
A). Our method readily generalizes to multicategory cases
(c > 2). The total number of trials for these two stimulus
conditions is nt = 162.

Fig. 1 shows the training filter, F , obtained through the
DLDA method, and corresponding to 1 s of data during the
target period on one of the folds of CV. The prefix L or R is
used to distinguish between the left and the right hemisphere.
Note that the spatial component of F changes in time, thus
confirming that space and time are not separable. Large
positive (dark red) and large negative (dark blue) coefficients
correspond to the brain areas and time samples that are most
informative for predicting the target location. As expected,

the majority of these large coefficients appear ∼150 to 200
ms poststimulus (onset of the target is at 0), consistent
with the latency of visual information processing [21]. A
straightforward application of DLDA to this data yields a
performance ∼70% (see Table I), assessed through CV as
follows. A single trial (out of 162) was designated for testing,
with the remaining trials designated for training. The feature
extraction filter T was obtained by DLDA of training data,
and 1-D features were extracted. A linear classifier was
then designed in the feature space, where test data was
projected and classified. This procedure was repeated 162
times, each time selecting different trial as a test data. The
overall performance was estimated by dividing the number
of correctly classified trials by 162.

TABLE I
THE PERFORMANCES (%) OF DLDA AND HARD THRESHOLDING (HT)

WITH DLDA, FOR THE target, delay AND reach PERIOD. (TOP)
UNCONSTRAINED, (BOTTOM) CONSTRAINED FILTERS.

Period Brain area Time DLDA HT+DLDA p′

target all all 70.37 72.22 2513
delay all all 58.02 58.64 8269
target all 150:750 72.22 80.25 918

P 150:750 86.42 87.06 13872
SM all 83.95 87.65 222

SM,P all 85.80 92.59 706
delay P all 59.86 62.96 1015

SM, P, OF all 65.43 71.60 2271
reach OF all 75.31 85.18 157

Fig. 1 shows that the filter F provides a sparse represen-
tation [17], [22], that is useful discriminatory information is
localized in time and space, while the distribution of noise is
broad, as illustrated by large areas of near-zero coefficients.
The goal of hard thresholding is to extract the most infor-
mative data subspace of dimension p′ (p′ < p) by setting the
near-zero coefficients to 0. The data samples corresponding
to the coefficients not affected by thresholding are used for
feature extraction and the performance is evaluated through
CV. In general p′ > nt , therefore DLDA must be used.
The threshold is systematically varied as a multiple of the
standard deviation of the coefficients of F and the value that
provides the best performance is selected. Note that DLDA
can be obtained from above by setting the threshold to 0.
Table I shows that this technique improves significantly upon
DLDA (for the reach period in the orbital frontal (OF) cortex
region, the improvement is ∼13%). Fig. 2 shows a feature
extraction filter T , corresponding to the optimal choice of
threshold, in the dataspace of dimension p′ determined by
the hard thresholding of the training filter in Fig. 1 . Note that
the improvement in the performance is more prominent for
datasets where p′ is sufficiently smaller than p. This result
seems consistent with [22], where a sparse representation
is indeed a necessary condition for efficient denoising by
thresholding. Note that the optimal threshold value obtained
through CV gives an idea of the achievable error rates but
does not have a generalization power, since validatory data



is used to determine the optimal threshold.
From Fig. 1 it follows that some important coefficients ap-

pear 100 ms within the onset of the stimulus, which stands in
contradiction to the latency of visual information processing
(∼150 ms [21]). Clearly, no discriminatory information is
expected this early in the trial, and these coefficients likely
represent noise artifacts, such as biological noise, recording
hardware noise or ambient noise. A constraint can be placed
on the training filter to reflect this fact, e.g. F(t) = 0, ∀t <
150. Table I also gives the performances based on training
filters which are constrained in time and/or space, followed
by DLDA. Further gain in performance can be obtained by
applying hard thresholding to these constrained problems.
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Fig. 2. Feature extraction filter T ∈R1×18200, corresponding to the optimal
threshold value for the target period. The locations of zero coefficients are
determined by applying optimal thresholding to the training filter F in Fig. 1.
Nonzero coefficients are obtained by performing DLDA on the remaining
data subspace.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented a feature extraction technique for large-
scale brain data under the small sample size conditions.
Using a thresholding approach in conjunction with DLDA,
we have developed a fast and improved feature extraction
technique. The technique does not require the space-time
separability assumption, common in the analysis of large-
scale spatio-temporal signals. For multidimensional features
(m≥ 2), our method utilizes joint statistical properties of the
feature vector, thereby avoiding heuristic feature selection
strategies and computationally expensive search algorithms.
The technique may have applications beyond BCIs, e.g.
epileptic seizure localization. Also, the technique can be
applied to any type of spatial, temporal, or spatio-temporal
signals.

B. Future Works

Our future research efforts are directed toward testing of
this technique in multicategory environment (c > 2), and

possibly for other types of brain signals. Also, potential ad-
vantages (disadvantages) of this technique will be compared
against various covariance shrinkage approaches.
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