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Abstract 

 

Creating thin sections of frozen tissue in the order of a few 
microns and then manually mounting the resulting slices on 
glass plates is a common technique in brain imaging. Large 
collections of such manually mounted cryosections are 
available for digital archiving. Scanning these slices at high 
resolution helps preserving them for future generations. The 
obtained data can also be used to restore the original shape 
of the specimen, i.e., to create a three-dimensional model. 
This task usually requires time-consuming individual 
alignment of the slices. We present a framework that uses a 
pipelining approach to aid in the alignment process of a 
large data set, and to automate most of the steps. 
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1. Introduction 
 

Creating a three-dimensional model from a set of manually 
mounted cryosections is a tedious and time-consuming task 
if done by hand. We have developed a framework that helps 
with the alignment of such raw image data material. It uses 
a pipelining approach that consists of multiple steps: (i) 
detection of image feature points that are used as 
registration markers, (ii) linear, affine transformation steps 
[2], and (iii) non-linear transformation steps. 
 

     
 

Figure 1: (a) A single cryosection of a Rhesus Macaque 
Monkey brain, scanned at 2666dpi; (b) detail view. 

 

We apply this technique to a set of 1,400 slices of a Rhesus 
Macaque Monkey brain that were scanned at a resolution of 
2,666dpi (9µm per pixel), resulting in images of 
approximately 5,000 x 4,000 pixels (76 GB of RGB data). 
The enormous resolution of the scanned cryosections 
(figure 1a) enables viewing of individual stained cell nuclei 
and other detail on the cellular level (figure 1b). 

In contrast to other modalities, such as Computed 
Tomography (CT) or Magnetic Resonance Imaging (MRI), 
where the slices are always perfectly aligned, in our case, 
where the cryosections were mounted manually onto the 
glass plates, the alignment is far from being perfect, making 
a three-dimensional reconstruction virtually impossible. 
Instead of reslicing and rescanning a new brain using a 
more automated slicing technique, we want to use the 
existing experimental material and use a software-based 
technique to align the slices so that a three-dimensional 
reconstruction is possible and a 3-D model is obtained that 
can be used for a 3-D brain atlas. The purpose of this 
framework is the creation of a well-aligned 3-D data set of a 
Rhesus Macaque Monkey brain. 

The implications of this framework reach beyond the 
registration of a monkey brain. The pipeline approach 
presented in this paper enables registration of large sets of 
cryosections ranging from mouse brains to human brains 
and from inner organs to embryonic images. Some of the 
collections that we possess today are more than eighty years 
old and need to be preserved before they start to decay, and 
some cannot be recreated due to ethical constraints and 
legal restrictions. For these reasons, it is critical to create 
digital archives that preserve these valuable collections for 
future generations. 

2. Brain Image Data 

This article describes a framework for a pipeline for image 
alignment. It is based on a hybrid approach, incorporating a 
number of image processing and biomedical imaging 
analysis techniques. The final goal of this work is to 
facilitate rendering of a high resolution 3-D volume of a 
Rhesus Macaque Monkey brain. 

The data set comprises of 1,400 high-resolution cross-
sectional images of the brain of a Rhesus Macaque Monkey. 
The Center for Neuroscience at the University of California, 
Davis, performed the cutting and the scanning of the slices. 
Both tasks were commonly done manually (sometimes 
several years ago before the introduction of automated 
scanning and image processing techniques), which gave rise 
to severe misalignment problems. The slices were scanned 
at a very high resolution (2,666 dpi). The objective of doing 
so was to archive their valuable information electronically, 
and to enable the construction of a 3D volumetric brain 
atlas. The results will later be transferred to human brains 
(figure 2). 
 



 
 

Figure 2: Cryosection of a human brain  
 

In the monkey brain image series, the thickness of each 
slice is 30µm and the cell nuclei were stained in order to 
make them clearly visible (figure 1b). 

Our algorithm uses different properties of the data set 
to identify points that are used as registration markers. 
Some of these properties are specific to the given data set, 
others are of a general nature. The pipeline approach 
enables us to add and remove different modules from the 
pipeline, so that it can be adapted to various data sets. This 
is a common phenomenon in biomedical imaging. Often 
times it is not possible to define a general solution for all 
problems in a given field, because we are using biological 
material which is subject to variation, and the structure of 
an algorithm should take this into account. Therefore, we 
choose a modular pipeline approach in order to minimize 
efforts necessary for the development of new modules and 
to maximize reusability of already implemented modules. 

For the given application, the chosen set of modules 
comprises of contour detection, a symmetry metric, 
thresholding (identification of areas exposing a higher 
density of dark spots), and identification of pre-existing 
registration markers. The latter is a module that was 
developed specifically for detecting pinholes caused by two 
metal pins that were pushed through the brain as 
registration markers before slicing [1]. All the others are 
general purpose modules that can be easily adapted to other 
applications by varying thresholds or cut-off values. 
 
3. Previous Work 

A number of image registration and alignment techniques 
have been used for different modalities. Most of the 
methods rely on the image content. The survey conducted 
by Maintz and Viergever [8] highlights the classification 
and dimensionality of different image registration methods. 
According to this survey, image registration can be based 
on a limited set of identified salient points (landmarks), on 
the alignment of segmented binary structures (segmentation 
based), or directly on measures computed from the intensity 
levels of the image (voxel property based).  

Landmarks can be anatomical, i.e., salient and 
accurately locatable points of the morphology of the visible 
anatomy, usually identified interactively by the user (Evans 
et al. [3], Zubal et al. [4]). Landmark-based registration is 
universally applicable as it can be used on any image, no 
matter what the specimen is. Landmarks are mostly used in 
combination with other registration techniques that rely on 
parameters like curved surfaces and volumes. The drawback 

of this technique is that usually user interaction is required 
for the identification of these landmarks. 

In segmentation-based techniques (Chen et al. [5], 
Henderson et al. [6]) the image is broken into fragments 
and one image is elastically deformed to match the second 
one. The rigid model approach is the most popular one 
currently in use. The Chamfer Matching technique 
introduced by Borgefors [7] is fast and popular for 
alignment of structures by means of a distance transform. 
The drawback of segmentation-based registration is that the 
registration accuracy is limited to the segmentation step. 

Voxel-based registration methods operate directly on 
the intensity values of the image without prior data 
reduction or segmentation. In some cases, registration is 
performed by aligning the center of gravity and principal 
orientation (Banerjee and Toga [10]). Principal axis 
methods are used if high accuracy is not essential but high 
processing speed and automatic operation is required. 

4. Image Registration Pipeline 
This article focuses on a hybrid pipelining approach to 
image alignment. ‘Hybrid’ in this context means that the 
properties of different algorithms have been combined in a 
modular pipeline, where each step of the pipeline either 
enhances the input images, detects landmark features in the 
images, or co-registers two images. The information that is 
propagated through the pipeline contains: 
 

 (i) a set of two consecutive input images, 
 (ii) a set of processed images from previous pipeline 

stages, and 
 (iii) image registration data from previous pipeline stages. 
 

Each stage of the pipeline stores the results from exactly 
one previous run, so that the results from the current image 
pair can be correlated to the results from the previous image 
pair. Only one new image needs to be loaded into the 
pipeline at each time. The other input image is still stored 
from the previous run. 

The advantage of this architecture is that the algorithm 
becomes scalable. This means that a global view on the data 
is not required. At each time, only two images are processed 
by the pipeline, using stored results from previous runs. 
This was one of the major design goals for the algorithm, 
because the size of the input data set (76 GB) exceeds by 
far the size of the main memory. 

4.1 Horizontal and Vertical Data Flow 
The pipeline represents a state machine. Each module of the 
pipeline stores its current state, and future runs depend on 
previous runs. Since some steps of the pipeline, such as 
Histogram Equalization, are global optimization steps, a 
two-pass protocol is necessary to collect all necessary data 
from the set of input images. This means, for instance, that 
in a first pass, all input images are read in order to calculate 
a global histogram, and in a second pass a transformation is 
applied to all images using the histogram data. 
 



Pass 1: 
 

 
Figure 3: Data flow during first pass 

 

Figures 3 and 4 illustrate the data flow during the first and 
second pass. The first pass is a data collection step. 
Histogram data is collected from all images and stored 
locally in the Histogram Equalization module. At the same 
time, the Preprocessing stage scales the images (section 
4.8), eliminates noise, discards color information, and 
stores the resulting images in a new directory. In the second 
pass, a Histogram Equalization step is applied to the 
preprocessed images. At the same time, a bounding box is 
determined, and the other modules of the pipeline compute 
additional alignment data. All alignment data is collected in 
the last stage of the pipeline and applied to the original 
image data that is propagated together with the processed 
image data through the pipeline. 

The following sections (4.2–4.5) summarize standard 
techniques that have been well established in the literature. 
Sections 4.6–4.8 describe special techniques that have been 
developed to aid in the alignment of a large-scale slice-
based data set. 

4.2 Preprocessing 
This stage involves a sequence of image enhancement and 
noise removal filters to improve the quality of the image 
(less noise, more contrast) before it enters the rest of the 
image alignment pipeline. 
 
4.2.1 Noise Removal 
The noise present in the image is random in nature and is 
predominantly due to variations in the scanning process. 
The noise amplitude is usually low, but high-frequency 
components of the noise signal have a tendency to affect the 
quality of contour detection algorithms. 

Therefore, the first stage in the pipeline is a noise 
removal step. It utilizes a common technique for noise 
removal known as “coring” [11]. In coring, an image signal 
is split into two or more bands; the high-pass bands are 
subjected to a threshold non-linearity that suppresses low 
amplitude values while allowing the high-amplitude values 
to pass through. 

Pass 2: 

 
Figure 4: Data flow during second pass 

 
4.2.2 Bounding Box Construction 
Since the images include a lot of empty pixels, the 
redundant rows and columns surrounding the region of 
interest can be eliminated.  

Suri et al. [13] have described the use of bounding 
boxes for performance improvement. They define the 
bounding box of a geometric object as a simple volume that 
encloses the object forming a conservative approximation 
of the object. The most common form is an axis aligned 
bounding box, where the extent of each dimension of space 
is bounded by the minimum and maximum coordinates of 
the object in that dimension. 

A common approach for constructing a bounding box 
is to search the pixels in the image from all sides until a 
significant change in color value is observed. This means 
that those points are identified where a gradient exceeds a 
certain threshold. A simple method can be employed to 
compare the neighboring pixel colors [1]. If the difference 
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is significant (after noise removal), then we can assume that 
an edge of the object has been found.  A bounding box 
helps narrowing down the search space, and the alignment 
is later refined in other stages of the pipeline. 
Also, it is not sufficient to use all bounding boxes and 
center them based on the first, last, or center slice, because 
this would not necessarily reflect the actual shape of the 
object. The images could be aligned at the top, at the 
bottom, or somewhere in-between. Therefore, a lateral 
section of a similar brain was used to control the alignment 
(figure 5). 
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Figure 5: Side view of a set of bounding boxes aligned using a 
lateral slice to match the shape of the original specimen. 

 
4.2.3 Conversion to Grayscale 
Since for the given data set the color does not carry any 
meaningful information that would help in the image 
alignment, we eliminate the color and convert the images to 
grayscale. For some data sets, another possible option 
would be to use a single channel from an image converted 
into the HLS or HSV color model. 

The color information is only used in the final stage 
after the coordinates for alignment of the images have been 
determined. The alignment is then performed on the 
original color images. 

4.3 Standardizing the Orientation 
The original image slices are mostly oriented in a preferred 
direction. However, in general, all slices must be slightly 
rotated to fit a main center axis (‘north-south’ orientation). 
For computing the orientation it is necessary to find the 
correct angle of rotation with respect to this ‘north-south’ 
axis, which is defined as perpendicular to the x axis of the 
image. 

Various algorithms deal with the problem of computing 
the orientation of an image [9]. Horn et al. [17] define the 
orientation of a region in an image by the direction of the 
axis of least inertia (minimum energy concept).  The 
minimum energy concept evaluates the line for which the 
integral of the squares of the distances to feature points in 
the image takes on a minimum value,  
 

E = ∫∫I  r2  f(x, y) dx dy, 
 

where r is the perpendicular distance from the point (x, y) to 
the line sought after, and f(x, y) is the image function. 

The orientation angle is evaluated and the image is 
rotated by that angle clockwise or anticlockwise to orient it 
towards the standard direction.  

After this stage, all the images are oriented in the 
desired ‘north-south’ orientation as required. 

4.4 Histogram Techniques 
Histograms are graphs which are plotted between two 
parameters to indicate how many samples fall into each of a 
series of measurement intervals. A histogram h(x) 
represents the number of pixels in an image with intensity 
level x. A common histogram is computed for all image 
slices, followed by a histogram equalization performed on 
all slices of the set. This step helps to improve the overall 
contrast of the images and the quality of subsequent 
pipeline steps (contour detection, etc.) 
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Figure 6: Arrow indicates orientation of a misaligned 
image slice with respect to the x axis of the image. 

4.5 Thresholding 

Using the histogram information a threshold can be 
computed [19]. Thresholding is a very useful tool for 
converting a grayscale image to a binary one. A side effect 
of such a ‘binarization’ is that the different lobes of the 
monkey brain can be more easily separated, and that the 
computation of the geometric center of the fragments is 
simplified. 

In the equalized histogram (figure 8), we observe two 
peaks corresponding roughly to the object (left peak) and 
the background (right peak) with a low valley in between. 
For the ‘binarization’, we choose a threshold value where 
the histogram has a minimum (figure 9). 
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Figure 7: Normalized Histogram    Figure 8: Equalization   

4.6 Object Recognition 

In the case of the Rhesus Macaque Monkey Brain data set 
the different lobes of the brain must be identified for 
individual alignment. 
Once the binary image has been obtained, the foreground 
objects and the background objects are separately labeled. 

Direction of 
orientation 

x axis 



Individual contiguous objects are assigned different labels 
so that they can be identified separately. A bit mask is used 
to describe the shape of each object. 

        � 

 

Figure 9: Image after thresholding (‘binarization’) 
  

For this form of object separation, we assume that the 
objects are 8-connected (loose connectivity) and the 
background is 4-connected (close connectivity). This way 
we ensure that even loosely connected objects are counted 
as single objects, and that the background appears as a solid 
area. Due to this asymmetry, remaining isolated noise pixel 
areas are not included in this segmentation. Morphology 
filters, such as dilation followed by shrinking filters, 
improve the connectivity of previously disjoint regions. 
These filters are part of the Object Recognition and 
Masking stage of the pipeline, and their window size is 
adapted to the size of the input image (approx. 1%, e.g., 
3x3 for 256x256 pixels). 

The following algorithm is used to label 4-connected 
components. 

Input: Binary image b(x, y) 
1. current_label = 1 
2. for i = 0 to max_x 
3. label(i, 0) = 0 
4. for j = 0 to max_y 
5. label(0, j) = 0 
6. for j = 1 to max_y 
7.     for i = 1 to max_x 
8.         if (b(i, j) == 1) then 
9.             if (b(i-1, j) == 0) and (b(i, j-1) == 0) then 
10.                 label(i, j) = current_label++ 
11.             if (b(i-1, j) == 1) and (b(i, j-1) == 0) then 
12.                 label(i, j) = label(i-1, j) 
13.             if (b(i-1, j) == 0) and (b(i, j-1) == 1) then 
14.                 label(i, j) = label(i, j-1) 
15.             if (b(i-1, j) == 1) and (b(i, j-1) == 1) then 
16.                 label(i, j) = label(i-1, j) 
17.   // same as label(i, j-1) 
Output: Label image label(x, y) 
 

A similar algorithm is applied to the binary image in order 
to assign unique labels to 8-connected objects. 

After labeling each object with separate masks, other 
valuable information required for the registration, such as 
the area of the object and the center of an area, is computed. 
The area of an object k in the image (in our case, for 
example, one of the lobes of the brain) is the summation of 
all pixels b(x, y) that share label k in the mask. 
 

Areak = ΣxΣy (b(x, y) & (label(x, y) == k)), 
 

where, b(x,y) denotes the binary values of the image pixels. 
The ampersand is a binary ‘and’ operator. The position of 
the center of an object is described by xc , yc : 
 

xc   = ΣxΣy  x (b(x, y) & (label(x, y) == k)) 
        Areak 
yc  = ΣxΣy  y (b(x, y) & (label(x, y) == k)) 
                            Areak 
   

When the center of each object is found (in addition 
to other feature points described below), the image 
registration can be performed by stacking the object centers 
on top of each other. 

4.7 Identification of Image Markers 

Shulga [1] has developed a method for automatic detection 
of pin holes of a particular size and shape. The algorithm 
trivially rejects all other holes that are not pin holes that 
meet the given criteria. In his algorithm, the processing 
starts from a slice near the center of the volume where both 
pin holes present in the current data set are visible. The user 
then selects the two pin holes for the first image. For the 
corresponding images the algorithm looks for the pin holes 
in a neighborhood defined by a given radius. 
 
4.8 Image Pyramid 

Keeping in mind the high level of detail in the images 
(figure 1b), we use a hierarchical image pyramid for 
simplification of the alignment problem. The resolution of 
the image is initially lowered, and since the color in stained 
cryosections usually does not bear any significant 
information for image alignment purposes, the color 
information is initially discarded in the interest of speed and 
efficiency. After the lower resolution slices are 
‘macroscopically’ aligned by the pipeline, the ‘microscopic’ 
(cellular level) alignment needs to be performed with all the 
detail information and the color information present in the 
input and output images. 

For instance, a reduction by a factor of 24 in each 
dimension reduces the size of the input image (5,000 x 
4,000 pixels) to a manageable size of 313 x 250 pixels, 
which is usually sufficient to compute a bounding box or to 
detect major landmark features. When up-scaling the 
coordinates of a contour or bounding box to match the 
resolution of the original input image, the uncertainty in the 
given example is ± 8 pixels. For most applications this can 
be tolerated. However, for optimal alignment a 
‘microscopic’ feature detection algorithm can be employed 
that aligns objects within this 8-pixel search radius. This 
step could be added to the current pipeline. In our 
implementation, the image pyramid consists of two stages 
(full and reduced resolution). 

5. Conclusions 

The alignment of biomedical images is of major importance 
when combining monomodal or multimodal two-
dimensional image slices into a 3-D volume. We presented 
a pipeline-based approach for misaligned monomodal 
image stacks that incorporates multiple steps: (i) detection 
of image feature points that are used as registration markers 
(pin holes, center points), (ii) linear, affine transformation 
steps (rotation, translation, shear), and (iii) non-linear 
transformation steps (individual alignment of objects based 
on segmentation). The difference between (ii) and (iii) is 



that in (ii) all pixels in the image are transformed in the 
same way, while in (iii) the image is segmented into 
individual objects, so that different parts of the image are 
subject to different transformations. 

We introduced a 2-pass pipelining approach that 
performs global computations (e.g., histogram) in a first 
pass, and then executes a sequence of algorithms on the 
image that both process the image and generate data for the 
final stage of the pipeline, i.e. for the Image Alignment 
stage.  The data is propagated through the pipeline as 
shown in figures 3 and 4. 

Besides some traditional techniques (4.2–4.5), we 
introduced several new techniques (4.6–4.8), such as an 
Object Recognition and labeling method, and a 
multiresolution technique that makes the algorithm scalable, 
i.e., independent of the size of the input data set. The 
pipeline was designed so that it can easily process data sets 
in the order of several gigabytes (the Rhesus Macaque 
Monkey brain data set has 76 GB). 

A conscious effort has been to make the pipeline as 
robust and autonomous as possible, eliminating human 
assistance and interaction as much as possible. Besides, our 
special concern has been to make the algorithm as versatile 
as possible so that it can be used with many other data sets 
either in its present form or with minor modifications 
(reconfiguration of pipeline modules, different thresholds 
and parameters for each module). 

After implementation of the first phase of the pipeline, 
a significant improvement was observed in the data set with 
the images exhibiting perfect alignment at the 
‘macroscopic’ level.  
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