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Figure 1: Selected results from a prototype of the proposed expression synthesis model for cartoon face animation. Row 1 shows instances 
of an example face model (17 Bezier patches). Row 2 delineates the degree of realism intended when invoking the corresponding 
expression in the emotion space (please see figure 2). Note the intentional change in eye and nose color due to anger. 
 
Abstract 
 
Inspired by traditional expressive animation, we attempt 
to propose an infinite emotion-space as a model to 
control free-form facial expression synthesis.  Although 
a number of models already exist for capturing, 
synthesizing, learning and retargeting facial expressions, 
very few of them actually focus on modeling the 
emotion-space itself. Most of these models span a finite 
set of captured/created expressions, and apply model-
space affine transformations to retarget them, or obtain 
new ones. We consider the fact that in reality any 
expression essentially originates in the emotion space 
(the brain), which eventually manifests itself as a group 
of transformations or interactions of physical body 
structures (bones, tendons, muscles, skin layers, etc.). In 
this light, we present an infinite emotion space model for 
syntheses of an infinite range of expressions for facial 
animation, limited only by the creativity and imagination 
of an animator.  
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1 INTRODUCTION 
 
Facial animation has been a subject of interest in the 
computer graphics research community for almost three 
decades now. Pioneered by Frederic I. Parke in 1972 [21], 
it has been driving research and efforts in numerous 
areas of application, e.g., virtual characters (avatars), 
human computer interaction, cognitive sciences, 
cosmetic surgery planning, computer games, and most of 
all, computer-generated animation. Depending upon the 
application area, various approaches have been taken to 
model the human face and its muscular and dermal 
behavior in pursuit of capturing and synthesis of realistic 
facial expressions.  The FACS system [9] was probably 
one of the earliest attempts to identify and describe 
facial expressions in the form of discrete metrics (Action 
Units or AUs). Since then, many variations of the 
method have been explored to enable reliable coding and 
recognition of primary expressions and synthesis of 
novel ones in an expression space [1, 2, 7, 8, 12, 14, 20]. 
 
Such systems employ factorization (statistics), principle 
component analysis (PCA), or artificial neural networks 
(Artificial Intelligence) as rule-based approaches for 
modeling a facial expression space. Most of them focus 
on the expression coding and recognition sub space of 
the latter, and very few of them actually address the 
issue of modeling the expression space itself to provide a 
wider possible expression range for aesthetic facial 
animation [5]. Even those, that do address this issue, 
focus primarily on expression space, and very few of 
them actually attempt to model the emotion space itself 
[12, 22, 23, 24].  



 

 

 
 
 

 

Surprisingly, there have already been a few noteworthy 
efforts in the cognitive sciences and psychology research 
community that actually attempt to model emotion space 
and explore its mapping with expression space [22, 23, 
24]. An example publication describes a 2D facial 
expression space presented by Schlosberg [24]. But this 
theory, which was later extended by Russell [22], does 
not necessarily support realistic expressions when multi-
dimensional scaling is used, because it uses only 6 
primary expressions [12]. We attempt to employ the 
extensive research and knowledge already present in 
cognitive science [6, 12, 22, 23, 24, 26] as well as 
computer science [5, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 
21, 25] towards modeling an intuitive expression 
synthesis system for cartoon animation. 
 
We consider the fact that an expression essentially 
originates in a virtual emotion space, which eventually 
manifests as a group of affine and/or non-rigid 
transformations of body parts or interactions of physical 
body structures (bone, tendon, muscle, skin layers, etc.). 
Most often this is in response to an observation through 
one of the body senses, or even thoughts (the reverse 
transformation mapping H). We thus aim at:  
 

- Modeling a generalized emotion space E as a source 
of expression vectors for arbitrary cartoon face 
models; and    

  
- Derive a mapping G from this model E to an infinite 

expression space P spanning visual impressions from 
abstract art (abstract) to real life imagery (realistic), 
traditional animation (expressive), and caricature 
(hyper-realistic). 

 
1.1 The Concept 
 
Consider a face model M defined by a set of discrete 
vertices V, where V = {vi | vi ∈ R3; i ∈ I+; 0 < i ≤ n}.  V 
can represent either the vertices of a manifold surface 
mesh with a connectivity Φ, the control points of an 
analytical surface defining M, or control elements of a 
synthetic anatomical structure modeling M (e.g. muscle 
model, spring model, etc.).  We associate two regimes 
with M: an emotion space E, and an expression space P. 
We define a one-to-many mapping G: E→→→→P. G maps an 
arbitrary emotion vector ei to a set of expression vectors 
{pik | pi ∈ R3; k ∈ I+; 0 < k ≤  mi}. To map an expression 
from a weighted combination ef of one or more emotion 
vectors to M, we obtain the corresponding set of 
expression vectors using G. This set of expression vectors 
can then be used to apply geometric transformations on V 
to obtain the desired visual effect in the object space. 
Later in this paper, we show that a barycentric 
combination of emotion vectors induces expressions in 
the realm of ‘realism’. For all other combinations that do 
not satisfy this condition, expressions with visual 

impressions ranging from neutral to expressive to hyper-
real to distorted are obtained.     
 

 
(a)    (b) 
Figure 2: (a) The sphere of realism* in emotion space. It is a 
sphere of unit radius, which defines the boundary of ‘realism’ 
the associated expression space. Any emotion vector ei that lies 
outside this sphere would transform to the visual impression of a 
‘hyper-realistic’ expression in the expression space. (b) Effect of 
change in magnitude of an emotion vector in E on visual 
impression of a face model mapped with the corresponding 
expression in P. *This term is meaningful only for an emotion 
vector space of dimensionality 3. It would be relatively more 
difficult to visualize a space of higher dimensions, and thus an 
example vector space of dimensionality 3 has been chosen to 
explain the conceptual relationships (please see section 3 for a 
detailed discussion).     

 
2 PRIOR WORK 
 
The area of expression coding and recognition has 
witnessed extensive efforts towards modeling of human 
the expression space.  The FACS system [9] is probably 
one of the earliest attempts to identify, elaborate and 
classify facial expressions in the form of atomic Action 
Units (AUs). It functions very well as a static technique 
for coding and recognizing expressions.  However, it has 
limitations as a synthesis tool for novel expressions. The 
limitations arise from the fact that an expression lasts for 
a finite temporal period, and also varies in degree or 
amplitude based on a neutral expression over both time 
and space. Attempts to add a temporal dimension to the 
original FACS model have not been accepted widely, 
because still the model cannot provide a flexible and free 
form synthesis space for new expressions [20].   
 
Other approaches have been presented to emphasize novel 
expression synthesis (conceptually analogous to motion-
capture and synthesis). But most of them are rule-based 
[3, 7, 8, 11, 16], and thus the synthesis capabilities are 
limited by the behavior of the underlying models.  
Recently, Noh et al. [19] proposed a novel technique to 
clone expression vectors and to automatically map them 
on arbitrary face models within constraints. This concept 
of synthesizing, storing, and reusing expressions is an 
important leap towards generality in expression space. 
However, the main focus of this work is on providing a 
framework for reusability of captured expressions; and 
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little details are given about actual synthesis of new 
expressions.    
 
Another recent work by Chuang et al. [5] addresses the 
issue of adding flexibility to synthesis of novel 
expressions besides retargeting the captured expressions. 
The method extracts expression content from a sequence 
of images, and uses it to synthesize new expressions. This 
method provides both the expressionism of an expressive 
animation system, as well as the flexibility of a rule-based 
expression-coding system. However, it functions 
primarily in expression space unlike our proposed infinite 
emotion space model. Also the target face models in the 
aforementioned work are 2D image space elements as 
opposed to a general 3D shape representation in our 
method.  
 
We present a continuous and infinite emotion space 
model for syntheses of neutral, through realistic, to very 
expressive and hyper-realistic (exaggerated and 
sometimes distorted) expressions for facial animation. We 
attempt to amalgamate the freedom of expression of 
traditional animation art with the generality of a realistic 
expression synthesis model for synthesis of unlimited re-
usable expressions for cartoon face animation.  The result 
is an infinite range of expressions that are limited only by 
the creativity and aesthetic sense of an animator.  
 
 
3 THE INFINITE EMOTION SPACE 
 
An essential contribution of this paper is a mathematical 
description of an infinite emotion space model. We define 
E as an N-dimensional emotion vector space spanning {ei 

| ei ∈ RN, |ei| = R} when N tends to infinity.  E is thus 
composed of two disjoint sets of emotion vectors: 
 

-  EB = {eBi | R = |eB| = 1}, the set of basis emotion 
vectors, EB ≠ Ø.  

- ES = {eSi}, the set of synthesized emotion vectors.  
 

It is to be noted that the absolute orientations of ei in E are 
of no practical significance, but their relative orientations 
are (since eBi are linearly independent and mutually 
orthogonal). The most intuitive way of visualizing an 
example emotion vector space of dimensionality N=3 (E3) 
is as a polar coordinate space with origin represented as a 
neutral emotional state e0. Any deviation dE3 = (dR, dΘ, 
dΦ) from e0 represents an emotion vector e which can be 
resolved into a combination of the basis vectors eBi, i = 
1…3. If e is a normalized vector, it is a barycentric 
combination of basis emotion vectors. Consequently, a 
sphere of unit radius in E3 would span all the possible 
emotions that would lead to ‘realistic’ or below realm of 
expressions (see figure 2).  All the examples shown in this 
paper, as well as an implementation, consider an emotion 
vector space of dimensionality 3.  

 

 
Figure 3: A conceptual view of our model. The infinite emotion 
space E spans unique emotion vectors. We start with a set of 
finite ‘basis emotion vectors’ ei (e.g., happy, angry, surprised, 
etc.). A combination of one or more of ei is mapped to a set of 
expression vectors pi using an emotion to expression transfer 
function G. Unlimited new emotion vectors can be created based 
on observations from the expression space using the expression 
to emotion space transformation H. Note that the figure does not 
claim to depict the orthogonality of the basis functions. It is just 
a conceptual view. Further, only the vectors labeled ‘happy’, 
‘angry’ and ‘surprised’ comprise the basis vectors. The vector 
labeled ‘sad’ is a synthesized or ‘derived’ emotion vector.    
 
Any emotion vector with an increasing magnitude of its 
L2 norm (greater than unity) would eventually cross the 
realms of ‘expressive’ and ‘hyper-realistic’ expressions 
when transferred to the expression space.  This notion is 
similar to the one mentioned in a recent work on motion-
capturing cartoons [4]. However, we try to model it 
towards expressionism in facial expressions as opposed to 
in motion styles.   
 
4 THE EXPRESSION SPACE  
 
In addition to E, we define an associated expression space 
P in three-dimensional Euclidean space R3. P spans n 
expression vectors pi, where 0 < i ≤ n (n is the number of 
discrete vertices in the associated face model M). Each pi 
in addition has an associated motion transfer function fi. 
This transfer function controls how much and when does 
an expression vector pi transform the vertex vi during 
animation with reference to vj, 0 < j ≤ n; i ≠ j. The role of 
fi is described in detail in section 5.1. 
 
4.1 Synthesis of Expression Vectors 
 
Consider an emotion vector ei in emotion space E. We 
define an emotion to expression space transfer function 



 

 

 
 
 

 

G, which generates a one-to-many mapping for all ei from 
E into P as follows: 

G: E→→→→P ≡ g(ei) = { pj | j ∈ I+;  0 < j ≤ n },   
 
Where 

pj  is the expression vector for vj in M. 
 

The expression vectors pj can then be obtained by the 
reverse mapping H as follows: 

H: P→→→→E ≡ h(ei, j) =  pj  |  j ∈ I+;  0 < j ≤ n  
 
 
5  THE OBJECT SPACE 

 
Figure 4: A complete emotion transfer cycle from E through P 
to the object space of M. M(0) is the face model with a neutral 
expression. Two emotion vectors e0 and e1 are transferred to the 
object space as D0 and D1, which transform M(0) to M0 and M1 
respectively. 
 
Once we have the expressions vectors corresponding to an 
emotion vector, we need a set of motion vectors to 
transform M into object space to yield the desired visual 
impression of a change of expressions.  
 
5.1 Synthesis of Motion Vectors 
 
We define U = {ui | ui ∈ R3; i ∈ I+; 0 < i ≤ n} as a set of 
motion vectors that are used as affine transformation 
operators on V to map the synthesized expressions on M. 
This possibly empty set U is derived as follows: 

 
U = {uj | 0 < j ≤ n} = {fj(pj)| 0 < j ≤ n}  
 

where 
fj  is the local motion transfer function for vertex 
vj  in M; and 
pj  is the expression vector for vj . 

Once we have this set of motion vectors, the model M can 
be transformed to yield the desired visual impression of 
expression change: 
 

M’ ≡ V’ = {vj + uj  | 0 < j ≤ n} 
 

However, for creating animations sequences, it is 
desirable to also have (k-1) intermediate model 
representations: 

 
M0 -> M1 -> … Mi …-> Mk-1 -> Mk  

 
We can extend the single transformation expression 
without loss of generality to a parametric form: 
 

U(t) = {uj(t) | 0 < j ≤ n} = {fj(t, pj )| 0 < j ≤ n} 
where t ∈ R 

 
M(t)  ≡ V(t) = {vj  + uj(t) | 0 < j ≤ n} 

 or 
     V(t)  = V(0) + D(t)  
  where  

D(t) = {uj(t) | 0 < j ≤ n} 
 
Notice that we have introduced an additional control 
parameter t over the degree of realism of the final 
expression. By not restricting t to a normalized linear 
scale, we can manipulate the visual impression of the 
mapped expression also in the expression space P. This 
allows us to smoothly blend between two emotions in E 
which manifest at the same degree of realism in the 
expression space.  Also, the local motion transfer function 
fi gives the flexibility of relative ‘delay’ in affine 
transformations of vertices over V. This gives an 
additional temporal control over the transition between 
expressions, providing additional flexibility to an 
animator. 
 
5.2 Object Space Transformations    
 
Now that we have formulated the emotion and expression 
space regimes, let us see how a basis or synthesized 
emotion vector e can be transferred to the object space of 
M. Consider again the Euclidean space that spans V, the 
set of discrete vertices that define M. To be able to map 
an expression originating as e in E onto M, our algorithm 
follows the following steps: 
 
Step I. Induce an emotion in E as a combination (not 
necessarily barycentric) of ei: 
 ef =  Σ wi ei 
 
(Note that if ei ∈ EB ∀ i, and we divide ef by Σ wi, we 
have restricted the resultant emotion vector to stay inside 
the sphere of realism.) 
 
Step II. Transfer the induced emotion vector ef to 
expression space P to obtain a set of corresponding 
expression vectors pj:  

g(ei) = { pj | j ∈ I+;  0 < j ≤ n } 



 

 

 
 
 

 

 
Step III. Obtain U, the set of object space motion vectors: 

uj  = fj(pj)  ∀ j        
 
Step IV. Transform V:   

 V’ = {vj + uj  | 0 < j ≤ n} 
 
However, when computing an animation sequence, steps 
III and IV are modified as 
 
Step III*. Obtain U(t), the set of object space motion 
vectors: 

uj(t) = fj(t, pj)  ∀ j        
 
Step IV*. Transform V:   

 V(t)  = {vj + uj(t)  | 0 < j ≤ n; 0 ≤ t } 
 
6 SYNTHESIS OF EMOTION VECTORS 
 
Since emotion space is the origin of this expression 
synthesis framework, synthesis of meaningful emotion 
vectors is an important prerequisite to its success. For 
simplicity, we start with a finite number (four) of basis 
emotion vectors (see Table 1).  
 

e vector Emotion  
 

#e0 Happiness 
e1 Sadness 
#e2 Anger 
#e3 Surprise 

Table 1. EB, the set of emotion vectors used for experiments, the 
results from which are shown in figures 1 and 5 (the color plate). 
#Denotes that ei is a basis vector.  
 
Conceptually, these emotion vectors can be 
created/acquired in one of the following three ways: 
 

- Expression capture from images (abstract art, real 
photograph, caricature), video (real life [5, 7, 8, 9, 
11, 19, 20], cartoon-animation) [Acquisition]. 

- Modeling by an artist [Creation]. 
- Automated synthesis from observation from the 

expression space P or within the emotion space 
[Synthesis]. 

 
Which one of these methods is used depends upon the 
application domain and the degree of realism desired 
therein. However, once the basis emotion vectors have 
been created/acquired, the combination method can be 
employed to populate ES, the set of synthesized vectors.   
 
For the experimental domain of this work, a set of four 
basis emotion vectors were acquired from a set of 
expression vectors {pj} using the reverse mapping H (pj 

were computed from affine transformations on a face 

model manually mapped with a neutral and a desired 
expression.).  Unfortunately, not much work has been 
pursued to propose a quantitative metric that measures the 
fidelity with which a vector in E represents an emotion. A 
recent work by Hendrix et al. [12] does address this issue, 
but their primary aim is to code and understand the 
relationship between primary expressions in emotion 
space. We foresee this as an important perceptual issue 
towards future research in expression synthesis. 
 
7 IMPLEMENTATION AND RESULTS 
 
The mathematical model described in the paper has been 
implemented on SGITM workstations (O2, Octane and 
above) running Irix 6.5. OpenGLTM is employed as a 
rendering engine for hardware supported polygon 
rendering. The QTTM library for C/C++ language support 
was used to develop the graphical user interface. The 
sample face model used for experiments is composed of 
just 17 Bézier surface patches, each one described by a 
5x5 control point array. It requires 12756 bytes of 
memory to store all the details necessary to create the 
images shown in figures 1 and 5 (the color plate). 
 
8 CONCLUSIONS 
 
We model an infinite emotion space E that is used for 
synthesis of a vast range of expressions. We also 
introduce a mapping between this emotion space E, and 
the expression space P. This model approximates the way 
facial expressions result from a living being’s emotion 
space that the brain converts into muscle contractions. 
The linear independence property of basis emotion 
vectors in the emotion space allows for a continuous 
range of synthesized expressions. The model is a general 
concept and can be integrated with most of the existing 
mathematical models that work directly in expression 
space. It can be used to enhance the current techniques for 
face modeling in object space (manifold surfaces, muscle 
models, spring models, explicit analytical surfaces, etc.). 
Also, due to a generality of concept, a system based on 
this model can map a synthesized emotion vector to an 
arbitrary face model. However, we would like to mention 
that this method has been experimented only with 
caricature face models, and the initial basis emotion 
vectors used in the pursuit have not been synthesized by a 
professional artist.  We hope that this work would 
introduce a new way of using perception behavior-based 
models for expressive facial animation. 
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Figure 5: Some of the resulting images depicting expression 
synthesis over a cartoon face model. Notice how the expressions 
range from sub-real to realistic to really expressive. Images c, g, 
i, j, k, l, m, n, o show expressions resulting from induction of 
mixed emotions in the infinite emotion space E. Also note the 
change in the degree of realism as the synthesized emotion 
vector ef spans out of the sphere of realism in E (images b, c, g, 
i, j, l, m, n, o). 
 


