
Wavelets And Textures With Illumination For Web-based Volume Rendering

 Sagar Saladi, Pujita Pinnamaneni Joerg Meyer
 Mississippi State University University of California, Irvine
 Engineering Research Center, 2 Research Blvd. Department of EECS/BME
 Starkville, MS 39762-9627, USA 644E Engineering Tower, Irvine, CA 92697-2625, USA
 {ss14 | pp4} @ msstate.edu jmeyer@uci.edu

Keywords: Volume rendering, texture mapping, Haar wavelets,
illumination

Abstract
 Advanced medical imaging technologies have enabled
biologists and biomedical researchers to gain better insight in
complex, large-scale data sets. These data sets, which occupy
large amounts of space, can no longer be archived on local hard
drives and are also difficult to transmit over currently existing
networks. To make the data accessible to researchers at remote
locations over the Internet within a reasonable amount of time,
we are describing a web-based volume rendering system that
incorporates a multi-resolution technique for transforming large-
scale data sets into hierarchical volumes. We are using Haar
wavelets to decompose the data set into a multi-level-of-detail
representation that can be transmitted from the server side to the
client side in a progressive fashion. The image is rendered using
a texture-based visualization technique in Java3D. A new
efficient illumination technique has been implemented to
improve the image quality of the rendered volumes by using pre-
calculated normal vectors for all the surface voxels. The
advantage of this method is that the illumination can be
calculated on the client side. It does neither affect the data
transmission time nor the interactive behavior of the texture-
based rendering algorithm.

INTRODUCTION

 We want to demonstrate that 3-D texture mapping in
combination with wavelet compression is a viable and efficient
alternative to conventional ray-based or projection-based
volume or surface rendering methods. Volume rendering is a
technique for visualizing, interacting with and interpreting large
volumetric data sets by sampling data in three dimensions. It is a
powerful tool well suited to a wide range of applications in
different scientific disciplines. Enhanced imaging techniques
like Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), Confocal laser-
scanning microscopy, etc., allow physicians and biologists to
distinguish pathological from healthy tissues or to study
microscopic cell structures in greater detail. The common aspect
about all of these scanning devices is that they provide
comprehensive 2-D cross-sectional images of anatomical
structures of the human body at high resolution. The size of
these data sets makes them difficult to store on a local hard drive
and prohibits efficient transmission over currently existing
networks.

 To provide a facility for large-scale data storage, San Diego
Supercomputer Center (SDSC) maintains a High-Performance
Storage System (HPSS), where large structured and unstructured
mesh data sets can be stored. The Scalable Visualization Toolkits
(VisTools), an NPACI initiative, primarily developed at SDSC, The
Scripps Research Institute (La Jolla, CA), UC Davis, UC Irvine, U
Texas, and Mississippi State University, are used to access these data
sets.
 The large-scale volumetric data sets provided by HPSS are
commonly stored in two typical file formats: the MSH format is used
for unstructured grids and supports multiple data sets in a single file,
while the VOL format is used for structured, volumetric data. The
VOL file format consists of two variants: "V1" (simple format) and
"V2" (additional features that can handle large data sets more
efficiently). Additionally, both V1 and V2 variants come in three
different flavors: vols, volb, and volc. A vols file consists of 8-bit
scalar values, a volb file consists of data stored as 32-bit RGB or
RGBA values, and a volc file stores data as 64-bit RGB-alpha-beta
values. "V2" can store data in both chunked and unchunked formats.
The chunked layout is used when the user is interested in rendering a
particular region-of-interest (ROI), say a tumor in the brain, or a
particular sub-volume in general.

BACKGROUND

Uncompressed data sets require massive storage capacity and

transmission bandwidth. Several file compression schemes have been
introduced. Despite several advantages of JPEG like simplicity,
satisfactory compression and decompression performance and
availability of special purpose hardware implementations, there are
several drawbacks, for instance, loss of color information due to the
chosen color model (YIQ), and block artifacts at low bit rates [1].

Wavelets have been proven to eliminate these artifacts as they
typically do not use color model transformations, and because their
basis functions have local support of variable length. Wavelets also
facilitate progressive transmission of images (recursive image
decomposition). They have an inherent multiresolution nature, which
makes them suitable for applications where scalability is required and
tolerable degradation can be accepted [2]. The Haar wavelet is one of
the simplest wavelet transforms and can be computed efficiently
using Integer arithmetics. Also, since we are dealing with pixel data,
which resemble more a rectangular signal than a continuous analog
signal, Haar wavelets are best suited to represent the original signal,
because they use box functions as base functions [3].

In most cases of image transformation, wavelets have been
implemented for one-dimensional signal transformation or two-
dimensional image decomposition. As volume rendering of images

has become more and more important, the necessity to store
volume data in a more compact way and the need for
hierarchical, multi-resolution representations and progressive
data transmission motivates the implementation of a Haar
wavelet transformation in 3-D.

Volume rendering has gained lot of importance in recent
times due to improvements in rendering hardware and due to its
widespread use in various applications. Ray-based algorithms
like ray tracing or ray casting produce high quality images but
are very time-consuming [4]. Splatting [5] is also
computationally expensive though it is more efficient than ray
tracing. The Shear-Warp [6] volume-rendering algorithm is
based on the factorization of the viewing matrix, which produces
artifacts if the opacity or color attributes of the volume contain
high frequencies.

Texture-based volume rendering can be used as an
alternative, as it has been recognized as a very efficient
technique, especially after the first SGI Reality EngineTM
featuring 3-D texture mapping hardware became available [7].
Hardware accelerated 3-D texture-based volume rendering
algorithms let users achieve interactive frame rates and high
quality images [8]. Most of the previous texture-based volume
rendering algorithms have been primarily based on OpenGL or
Open Inventor [9, 10]. The need for web applications in recent
years has encouraged researchers to explore web-based
rendering techniques using Java and Java3D [11]. Earlier works
include methods of extracting slices on the client side [12] or
remotely on the server side [13]. Some authors proposed loading
the entire data set onto one's local drive, but these methods
could prove tedious due to the limited storage capacity on the
client side. Server-based storage can also be inefficient if large
data sets need to be transmitted due to the limited bandwidth
that current networks typically provide. To overcome these
drawbacks, we are developing a web-based volume rendering
system, which uses 3-D Haar wavelet transformations to
transform large data sets into multi-resolution volumes before
being transmitted over the network to the client side. The
transformed volumes are then used in texture-based volume
rendering on the client side. Previous texture-based volume
rendering algorithms have incorporated different lighting
methods to bring realism to the rendered volumes [10, 11, 14].
Our texture-based volume rendering application provides an
efficient illumination implementation by using a positional light
source and pre-calculated normal vectors for all surface voxels
of the 3-D volume.

WEB-BASED VOLUME RENDERING
SYSTEM

 Our web-based volume rendering system implements a
client-server model (figure 1) [15, 16]. The data repository
(HPSS), where our input data sets are stored, allows the users to
define public and private user groups.
 On the server side, depending on the file format either a
series of 2-D cross-sections or a sub-volume is extracted from a
data set using VisTools. The 2-D cross-sections are assembled to
form a 3-D volume (or 3-D array). This volume is then
transformed using a 3-D Haar wavelet transformation and
compressed into a more compact representation. The
compressed representation of the volume is then transmitted to

the client who had requested this data set or a particular sub-volume
for rendering. The client-side rendering algorithm renders it as a 3-D
volume using 3-D texture mapping in Java3D. The initial data
transmission usually consists of a coarse representation of the entire
original volume, which serves as an initial preview of the data set for
the user. The resolution of the rendered volume is increased later by
adding detail coefficients to the initial coefficients that represent the
coarse volume. The data reconstruction uses an inverse Haar wavelet
transformation. Though the whole data set can be reconstructed on
the client-side and rendered in full resolution, in many cases it is
sufficient to render only a particular region-of-interest (ROI) selected
by the user in full detail. In this case, a low-level representation of the
ROI is transmitted first, along with a coarse overview representation
of the rest of the data set (Figure 2). Subsequently, the detail
coefficients of the ROI are transmitted to render the ROI in full
resolution.

ACCESSING DATA SETS USING VISTOOLS

 The VisTools are available in both a Java and C++ version. To
implement a platform-independent application, the Java version of
the VisTools is used. The VisTools can be used to extract 2-D cross-
sections from the data sets.

Figure 1. System Architecture

 In order to reduce the amount of information that needs to be
transmitted from the server to the client, sub-volumes can be
extracted from a large data set. Extraction of sub-volumes is helpful
when the user is interested in a particular region of the data set and
wants it to be rendered at a higher level-of-detail than the rest. A low-

Dataset

2D cross-
sections

3D Volume

3D Haar Wavelet
Transformation

Intranet

Internet

3D Haar Wavelet
Reconstruction

3D Texture
Mapping

3D Texture

Server (HPSS) Client

Client-side rendering Volume

resolution version of the data set is used to provide the necessary
context information and to enable orientation and navigation
within the data set. For example, a neuroscientist might be
interested only in a particular part of the brain for conducting his
or her analysis of the tissue. For such cases, VisTools support a
special format called the chunked file format (“V2”), which
enables the extraction of sub-volumes from a data set.

Figure 2. Sub-volume representation

 We tested our algorithm by extracting cross-sections from a
CT scan of a human head (ctbrain.vols), a human brain
(brain_stride_8.volc), a cancer cell (cell.volc) and a series of
cryosections of a human brain (brain_stride_cryo_8.volc). The
CT scan of a human head consists of 512 x 512 x 231 elements,
the human brain data set consists of 94 x 113 x 131 elements,
the cancer cell data set consists of 251 x 70 x 312 elements, and
the cryosections of a human brain consist of 223 x 144 x 184
elements. All the sizes of these data sets clearly show that they
occupy large amounts of space and cannot be accommodated on
commodity desktop machines.
 Sample 2-D cross-sections extracted from these data sets
are shown in figure 3.

 CT head Human brain Cryosection of a
 human brain

Cancer cell

Figure 3. Sample 2-D cross-section

HIERARCHICAL REPRESENTATION OF
LARGE DATA SETS USING 3-D HAAR
WAVELETS

 After the cross-sections are extracted from the data set, the
data needs to be transformed into lower-resolution
representations to enable faster transmission over the network.
The Haar wavelet transformation has been implemented in 3-D
to enable transformation of a 3-D volume. The Haar wavelet
transformation decomposes an image into a set of low-pass filter
coefficients and a set of high-pass filter coefficients (detail

coefficients). To give a better idea of the actual implementation of the
wavelet transformation, we illustrate the procedure with a simple
numeric example.
 Assume we have a one-dimensional image with an 8-pixel
resolution where the pixels have the following values [17]:

9 7 3 5 9 3 1 9
Original data

 The low-pass filtered coefficients are obtained by averaging two
consecutive pixels, while the detail coefficients represent the
difference between the average and one of the two consecutive
pixels. After the transformation cycle, the above image will be
represented as follows:

 8 4 6 5 1 –1 3 –4
 Low-pass filter coefficients Detail coefficients

 Now the original image can be represented as a low-resolution
image ((a+b)/2), which consists of four pixels, and another four-pixel
image, which contains the detail coefficients ((a-b)/2). Recursively
repeating this algorithm leads to an image that is reduced by a factor
of two for each cycle.
 This simple 1-D scheme can be lifted to higher dimensional
cases. For a 2-D wavelet transformation, this algorithm is applied in
the x-direction first, and then in the y-direction. Figure 4 shows the
low-pass filter coefficients and the detail coefficients obtained after
each cycle for a single slice of a human brain. Since most of the
detail coefficients are very small, they can be discretized or neglected
in order to obtain higher compression rates (lossy compression). One
cycle for an n-dimensional data set is defined as the completion of the
algorithm for all n directions [15, 16].

Original slice First cycle Second cycle Third cycle

Figure 4. Low-pass filter and detail coefficients of a Haar wavelet

transformation

 For progressive rendering, the low-pass filtered coefficients are
sent to the client first, while the detail coefficients are transmitted at a
later time. When the detail coefficients are received on the client side,
detail information is added to the volume, which has already been
rendered, to refine the image. The reconstruction of the image data
uses simple arithmetic operations (integer arithmetic). As the image
array received on the client side consists of the low-pass filter
coefficients and the details coefficients, the respective pixel values
are obtained by adding and subtracting the corresponding detail
coefficients to and from the low-resolution image coefficients. The
reconstructed pixel values are:

(8+1) (8-1) (4+(-1)) (4-(-1)) (6+3) (6-3) (5+(-4)) (5-(-4))

 9 7 3 5 9 3 1 9

Reconstructed data

+

ROI

These values are identical to the original values. After the data
set has been reconstructed using the Haar wavelet reconstruction
algorithm, the volume is rendered using 3-D texture mapping in
Java3D.

VOLUME RENDERING USING
TEXTURES

 2-D texture mapping can be used to change the appearance
of an object by mapping a 2-D image onto the surface of the
object while requiring only a little increase in the rendering time
[18]. Multi-dimensional texture mapping maps a multi-
dimensional image to a multi-dimensional space usually by
exploiting hardware-accelerated rendering capabilities.
 The technique of 3-D texture-based volume rendering
involves loading a 3-D texture into the texture buffer and
mapping a stack of parallel planes in back-to-front order with
suitable textures, perpendicular to the viewing direction. 3-D
texture coordinates are then tri-linearly interpolated at the
polygon vertices using the 3-D texture mapping hardware in
order to map the values from texture space to the object space in
which the polygonal surfaces are defined. Alpha blending and
compositing is done for each textured plane with the contents of
the frame buffer to produce a 3-D representation of the volume.
The Java3D API is used for the implementation of 3-D texture-
based rendering. Using the Java3D API, the required Java3D
objects are created and inserted in a scene graph for rendering
[19]. The scene graph that is used in developing our texture-
based volume rendering application is shown in the figure 5.

 For loading a data set into memory, a mesh is created using the
VisTools. Once the mesh is loaded into the memory successfully, pre-
processing is performed to create a scene graph with the 3-D texture
and its attributes for rendering. Alpha values are assigned to the
extracted 2-D cross-sections for enabling transparency and alpha
blending, through which the interior structures of the volumetric data
set can be rendered. All the planes that are in the scene graph are
rendered in a back to front order using the 3-D texture mapping
hardware in order to display a 3-D reconstructed volume. Results
obtained by rendering different data sets in 3-D are presented in
figure 6.
 The above-defined texture mapping technique is used in
progressively reconstructing the low-resolution volumes that are
transmitted to the client side. The detail coefficients are added to the
already rendered low-resolution image to refine the original image.
 Figure 7 shows a progressively reconstructed data set from a
low-resolution representation to its original resolution. At each level
of reconstruction the detail coefficients are added progressively to the
corresponding low-pass filter coefficients. A user interface,
VOL<X>REND, that is capable of reading volb, volc and vols (volx)
files, has been developed for rendering these reconstructed data sets
in 3-D (figure 8). The number of slices to be mapped onto the planes
should be a power of two, since the 3-D texture restricts its
dimensions to powers of two. The upper limit of slices and planes a
user can select is displayed in a panel of the user interface. A larger
number of slices gives a better quality of the rendered image and less
number of slices gives more speedup.

 CT head with skin Semi-transparent Bone structure of
 CT head a CT head

 Cryosections of a Human brain Cancer cell
 human brain

Figure 6. Data sets rendered using 3-D texture mapping

 The user can also select different transparency transfer functions
(Linear Mapping, Exponential Mapping, Threshold Mapping, etc.)
for rendering and viewing the inner structures of the data set. For
each transparency function, the alpha value of every pixel in the 3-D
buffer is modified. When the user selects a different transfer function
or different number of slices and planes, a new 3-D texture and the
newly specified number of planes are created with the new alpha
values inserted into the 3-D texture buffer.
 The user can interact with the 3-D volume with both the
keyboard and the mouse. The transformations (rotation, translation
and scaling) are applied to the 3-D texture instead of the geometry,
keeping the planes always perpendicular to the viewing direction.

Physical
Environment

Figure 5. Scene graph

Screen3D

Canvas3D

View

Virtual Universe

Geometry Appearance
GeometryAppearance

Texture

Rendering
Attributes

Transparency
Attributes

Texture
Attributes

Polygon
Attributes

BG BG

TG BG

OG

B1 B2

Locale

Physical BodyQuad2 Quad1
Quadn

This method eliminates the redundancy of creating a new 3-D
texture for every new coordinate transformation of the 3-D
volume.

 Initial preview Second stage

 Third stage Final stage

Figure 7. Progressive reconstruction

Figure 8. User interface of VOL<X>REND

ILLUMINATION

 Illumination adds realism to a scene, and it provides a more
realistic visual appearance of 3-D models. It also provides an
additional depth cue that makes it easier to recognize and
distinguish anatomical features. An illumination model
determines the color of a surface point by simulating light
attributes (intensity, color, position, direction) and material
attributes (color, reflectivity, transparency) [20].
 In order to illuminate a 3-D object, a light source (IL) must
be defined, and normals must be calculated for all surface voxels
of the 3-D model. In our texture-based volume rendering
algorithm, which uses 3-D texture-mapped 2-D planes as
geometric objects, there is no surface information available to
calculate normals for surface voxels. Therefore, we estimate
normal vectors based on gradients (tri-linear interpolation) for
the surface voxels.
 The first step in this process is to identify the surface
voxels of the 3-D volume. A voxel is a surface voxel if at least

one of its neighbor voxels is outside the 3-D object. A voxel is called
an outside voxel if it is either completely transparent or close to the
background color. Since a data set can be rendered to display
different anatomical structures or materials by selecting different
transparency mappings, the material boundary keeps changing. For
example, when rendering the bone in a CT scan, all the voxels that
represent soft tissue are made totally transparent. Therefore, along
with testing a voxel’s color, its alpha value is also tested for
determining whether it is an outside voxel. When a surface voxel is
identified, a normal is calculated as the normalized sum of all the
gradient-weighted unit vectors of its outside neighbors.
 Figure 9 shows a 2-D representation of a normal vector of a
surface voxel. A 2-D surface point has 8 neighbors, and a 3-D surface
voxel has 26 neighbors. For each voxel in the 3-D texture, all its 26
neighbors must be tested to identify whether it is a surface voxel. A
positional light source is chosen and kept fixed at a particular
position in the scene.

Figure 9. Calculating a normal for a 2-D surface point

 According to Lambert’s law, a dot product must be calculated
between the light vector and the normal of a surface voxel to
determine the percentage of light a surface voxel reflects. For diffuse
surfaces, the reflected light is determined by the cosine between the
surface normal N, and the light vector IL, (i.e., idiff = N · IL = cosφ)
[20]. The resulting value of the dot product is multiplied with the R,
G, and B components of the color of the respective surface voxel.
This way we modulate the intensity and calculate the new color of the
voxel.
 In summary, all surface voxels are identified for a 3-D texture,
their normals are calculated, and the resulting newly colored pixels
replace the existing 3-D texture. This 3-D texture is then used in a 3-
D texture-based rendering algorithm as described in the previous
section.
 Since the light position is fixed to the scene, it is rotated along
with the texture, when a camera motion is simulated by rotating the
texture. If the light position keeps changing with respect to the
texture, recalculation of the 3-D texture is necessary for every new
orientation, which decreases the performance of the algorithm.
 The advantage of this algorithm is that for a fixed light source it
is possible to rotate, scale, and translate the object within the texture
buffer without any performance loss.
 Figure 10 shows some of the results that were obtained by
incorporating a light model in the 3-D texture-based Java3D renderer.
The results show a significant improvement in image quality of the 3-
D rendered data sets.

CT head rendered without and with illumination

Human brain rendered without and with illumination

A gray scale human brain rendered without and with

illumination

Figure 10. 3-D Rendered volumes showing the effects of
illumination

STATISTICS

 Timings were taken for sample data sets rendered with
VOL<X>REND, and they were taken individually for loading,
processing, and rendering. The loading step includes the creation
of the data structures and the actual file loading, the processing

step includes creating a 3-D texture, inserting alpha values into the 3-
D texture, creating planes and finally creating a scene graph, and the
rendering step includes the time taken by the Java3D renderer to
render the scene graph. The timing values are shown in Tables 1+2.
 These timings were taken for rendering the data sets in 3-D with
and without illumination both on an SGITM workstation (Machine A),
and on a Sun workstation (Machine B). Machine A is a SGITM with
four 400Mhz IP27 R12000 processors and 4096 MB of main
memory. It has an InfinityReality3TM graphics engine that supports a
texture of size 2048 x 2048 x 1. Machine B is a sun4u 8-slot SunTM
Enterprise 4000/5000 machine with a system clock frequency of 82
MHz and a main memory size of 2048 MB.
 Please note that when the user selects a different set of slices and
planes, the data set is not loaded again, since it is already present in
the memory. Moreover, rendering time also decreases for subsequent
combinations of slices and planes, since the scene graph is not
constructed again from scratch, instead new nodes are added to the
already constructed scene graph.
 The average total time for rendering eight slices and sixteen
planes of any data set is less than 15 seconds. Therefore, in less than
15 seconds the user can get a preview of the data set, and the image
will be continuously refined as new detail coefficients are received by
the client. There is a 2.51 factor of increase in the total time to render
the CT head data set with 256 slices and 512 planes on Machine A,
and a 1.73 factor of increase on Machine B, when compared with the
times taken to render the same data set without illumination.
Similarly, for a human brain data set the time increases by a factor of
4.93 on Machine A and 3.74 on Machine B (rendered with 128 slices
and 220 planes). This factor of increase in time is in the processing
step where all the voxels in the 3-D texture are traversed to define
normals for surface voxels and calculate new shaded pixel colors,
which are again saved in the 3-D texture.
 There is no significant change in the rendering time with
illumination and without illumination, since in both cases always the
same size of the 3-D texture is rendered.

Table 1. Timing results of a CT scan of a human head without and with illumination

Slices /
Planes

Loading
(ms)

Processing (ms)
(Without

Illumination)

Processing (ms)
(With Illumination)

Rendering (ms)

 A B A B A B A B
8/16 1435 3108 5512 10547 7671 13834 158 92

64/128 0 0 26921 42049 48505 72488 103 227
128/256 0 0 53286 84160 113118 144540 132 538
256/512 0 0 105541 167784 266114 291258 196 756

Table 2. Timing results of a human brain without and with illumination

Slices /
Planes

Loading
(ms)

Processing (ms)
(Without

Illumination)

Processing (ms)
(With Illumination)

Rendering (ms)

 A B A B A B A B
8/16 2864 3388 2952 5753 5215 9723 364 85

16/32 0 0 2499 2977 9616 16031 49 185
32/64 0 0 4686 5980 17961 26431 31 199

64/128 0 0 9493 11881 40118 49629 51 235
128/220 0 0 18772 25324 92749 96182 83 455

CONCLUSIONS AND FUTURE WORK

 We have presented a 3-D Haar wavelet algorithm for
hierarchical representation of large data sets that can be used to
transmit low-resolution representations followed by detail
information across the network. Progressive data transmission
enables the client to render an initial preview image instantly
while the rest of the data set is added as detail information as
soon as it becomes available. VOL<X>REND is a fast,
interactive, Java-based, platform-independent, texture-based,
direct volume rendering system for large biomedical data sets
that are encoded in the VOL file format. It can be easily
extended to read other volumetric formats by replacing the read
method, and it can also be used for other application domains.
 Defining gradient-based normals for surface voxels in 3-D
volumes and incorporating an illumination model have
significantly improved the image quality of the rendered images.
Processing time is slightly increased when using lighting, which
affects the overall performance of VOL<X>REND, but the
rendering time remains constant, so that the frame rate and the
interactive response time of client application remain
unchanged. This is an important feature and one of the major
contributions of this work.
 Future work will focus on calculating shadows for
volumes, which will provide even more realism. New techniques
need to be explored for re-rendering a data set without much
decrease in performance when the position of the light source is
moved. Since VOL<X>REND is implemented in Java, it will be
integrated into a web-based volume rendering system, such that
it supports multiple users and allows to render large-scale
biomedical datasets or sub-volumes of such data sets
hierarchically (low-resolution followed by detail information)
over the web.

ACKNOWLEDGEMENTS

The authors would like to thank Arthur J. Olson (The Scripps
Research Institute, La Jolla, CA) for providing the sample data
sets, David Nadeau and Jon Genetti (San Diego Supercomputer
Center, SDSC) for providing the source codes for the Scalable
Visualization Toolkits. This project was funded in part by the
National Partnership for Advanced Computational Infrastructure
(NPACI) under award no. 10195430 00120410.

REFERENCES

[1] Saha, S. 2000. “Image Compression-from DCT to Wavelets: A

Review.” http://www.acm.org/crossroads/xrds6-
/shahimgcoding.html

[2] Boggess, A. and F. J. Narcowich. 2001. A First Course in
Wavelets with Fourier Analysis. Prentice-Hall.

[3] Meyer, J. 1999. “Interactive Visualization of Medical and
Biological Data Sets." Ph.D. Dissertation, University of
Kaiserslautern, Germany.

[4] Levoy, M. 1990. "Efficient Ray Tracing of Volume Data." ACM
Transactions on Graphics, vol. 9, no. 3, July: 245-261.

[5] Westover, L. A. 1990. "Footprint Evaluation for Volume
Rendering.” Computer Graphics, vol. 24, no. 4, August: 367-376.

[6] Lacroute, P. and M. Levoy. 1994. “Fast Volume Rendering Using
a Shear-Warp Factorization of the Viewing Transformation.”

Proceedings of the 21st conference on Computer graphics and
interactive techniques. ACM Press, NY, 451-458.

[7] Akeley, K. 1993. “Reality Engine Graphics.” In Computer
Graphics, Proceedings of SIGGRAPH 93, 109-116.

[8] Cabral, B; N. Cam; J. Foran. 1994. “Accelerated Volume
Reconstruction and Tomographic Reconstruction Using Texture
Mapping Hardware.” In 1994 workshop on volume visualization
(Washington, DC, October). 91-98.

[9] Meissner, M; U. Hoffmann; W. Strasser. 1999. "Enabling
Classification and Shading for 3-D Texture Mapping based
Volume Rendering Using OpenGL and Extensions.” Proceedings
of IEEE Visualization (Oct 24-29). IEEE, 207-526.

[10] Westermann, R. and T. Ertl. 1998. “Efficiently Using Graphics
Hardware in Volume Rendering Applications.” Proceedings of
the 25th annual conference on Computer Graphics and interactive
techniques (July). ACM Press, NY, 169-177.

[11] Bailey, M. 2001. "Interacting with Direct Volume Rendering.”
IEEE Computer Graphics and Applications, vol. 21, issue 1,
February: 10-12.

[12] Engel, K; P. Hastrieter; B. Tomandl; K. Eberhardt; T. Ertl. 2000.
"Combined local and remote visualization techniques for
interactive volume rendering in biomedical applications.”
Visualization 2000. Proceedings (Salt Lake City, UT). 447-452,
587.

[13] Meyer, J.; R. Borg; B. Hamann; K. I. Joy; A. J. Olson. 2000. "VR
based Rendering Techniques for Large-scale Biomedical Data
Sets.” Online Proceedings of NSF/DoE Lake Tahoe Workshop on
Hierarchical Approximation and Geometrical Methods for
Scientific Visualization (Granlibakken Conference Center, Tahoe
City, CA). 73-76.

[14] Gelder, A. V. and K. Kim. 1996. "Direct Volume Rendering with
Shading via Three-Dimensional Textures.” Proceedings of 1996
Symposium on Volume Visualization (October). IEEE Computer
Society, 23-30, 98.

[15] Pinnamaneni, P.; S. Saladi; J. Meyer. 2002. "Remote
Transformation and Local 3-D Reconstruction and Visualization
of Biomedical Data Sets in Java3D.” Visualization and Data
Analysis 2002 Conference, Photonics West - Electronic Imaging
2002 (San Jose, CA, Jan 19 – 25, 2002). 44 – 54.

[16] Saladi, S.; P. Pinnamaneni; J. Meyer. 2001. “Texture-Based 3-D
Brain Imaging.” 2nd IEEE International Symposium on
Bioinformatics & Bioengineering (Bethesda, MD).

[17] Eric, T. D. D.; J. Stollnitz; D. H. Salesin. 1995. “Wavelets for
Computer Graphics: A Primer Part I.” IEEE Computer Graphics
and Applications, vol. 15, no. 3, May 1995: 76-84.

[18] Hackbert, P. S. 1986. “Survey of texture mapping.” IEEE
Computer Graphics and Applications, Nov: 56-57.

[19] Bouvier, D. J. 2002. “Getting started with the Java3D API.”
http://developer.java.sun.com/developer/onlineTraining/java3d.

[20] Moller, T. A.; E. Haines. 2002. Real-Time Rendering. A K Peters,
Natick, MA.

