
Rendering Particles for 5D Scalar Fields in a

Virtual Environment: The Need for Speed

Rhonda J. Vickery∗

Mississippi State University

rvickery@erc.msstate.edu

Timothy R. Keen∗∗

Naval Research Laboratory

keen@nrlssc.navy.mil

Robert J. Moorhead∗

Mississippi State University

rjm@erc.msstate.edu

Joerg Meyer†

University of California, Irvine

jmeyer@uci.edu

Randy J. Brou∗

Mississippi State University

rjb2@erc.msstate.edu

Ashley M. Noble∗

Mississippi State University

amr@erc.msstate.edu

Joel P. Martin∗

Mississippi State University

jmartin@erc.msstate.edu

Stephanie M. Doane∗

Mississippi State University

sdoane@erc.msstate.edu

Keywords: Particle Rendering, Texture Synthesis,
Texture Generation, Computer Graphics, Scientific Vi-
sualization

Abstract

This work presents a Synthesized Cell Texture (SCT)
volume visualization algorithm for multiple scalar value
fields, where a specified maximum slice resolution is
used to scale the multi-scalar field values for each 3D
cell to the maximum values found throughout the data
set. The values are randomly distributed as particles
varying in number, size, color, and opacity within a 2D
synthesized texture. This approach facilitates viewing
of closely spaced layers commonly found in sigma co-
ordinate grids. Computation time and texture memory
are traded off against the number of geometric primi-
tives which must be sent through the graphics pipeline
of the host system. The system is optimized for deploy-
ment in a four wall CAVE-like virtual environment.

The SCT method is compared with two common ba-
sic particle representations: flat-shaded colormapped
OpenGL points and quadrilaterals. Performance statis-
tics show the SCT method to be up to 44 times faster,
depending on the volume to be displayed and the host
system. The SCT method has been successfully ap-
plied to oceanographic sedimentation data, and can be
applied to multiple scalar fields in other problem do-
mains as well. Future enhancements include the ex-
tension to time-varying data and parallelization of the

∗ERC, PO Box 9627, Mississippi State, MS 39762
∗∗Oceanography Division, Stennis Space Center, MS 39529
†Department of Electrical Engineering and Computer Science,

644E Engineering Tower, Irvine, CA 92697-2625

texture synthesis component to reduce startup time.

INTRODUCTION
Modeling and simulation of complex processes often

produce scalar, or single valued, data. Rather than
analyzing the raw data values on a point-by-point ba-
sis, researchers have turned to ways of visually repre-
senting entire regions of data, such that relationships
between variables can be examined. Usually only one
scalar field is present, but there are physical problem
domains where it is desirable to visualize several related
scalars at once. These are often referred to as “profiles”
with many different scalar values represented at one
grid point (up to 20 for some sedimentation data), and
whose values are of interest both individually and as
part of the whole profile. This extra dimension is prob-
lematic for off-the-shelf visualization software, and has
until recently only been visualized as a single combined
entity throughout a volume, or as individual scalar val-
ues. The full profiles themselves have only been visu-
alized at individual points or columns of points aligned
in the z direction.

For many of these applications, the scalar field repre-
sents a quantity of suspended material that is expressed
as mass per unit volume (sedimentation) or mass of sus-
pended particulate per mass of suspending volume (for
many atmospheric processes). Although this puts all
quantities on an equal basis for comparison, it does not
give a direct indication of how many particles of differ-
ent sizes are actually suspended. What this means is
that for each physical point in space, or grid point in
the model, there are concentration values for a number
of different grain sizes (the multi-scalar aspect). The



combined effect is important for the production of ac-
curate model results, but the added dimension creates
difficulties for existing visualization methods. In ad-
dition to longitude, latitude, depth (or altitude), and
time, there is now a fifth dimension, grain size, making
it difficult to display values individually using conven-
tional methods.

As an example, point profiles of the overall suspended
sediment concentration (SSC) have been used for visu-
alization of sedimentation processes [1, 2]. In Figure 1a,
the sediment concentration values are colormapped on
a log10 scale for a column of water at a grid location
on a raised area within a shallow water region (or hill
location). The columns of points indicate the indi-
vidual SSC for each grain size from smallest (left) to
largest (right), where zero values are dark blue (black
in greyscale). In this case the largest grain size repre-
sented is 3000 times larger than the smallest, and so
concentration values very close to zero for the smaller
grain sizes are still significant. Figure 1b shows a sim-
ilar profile for a deeper grid location within the same
shallow water region (hole location). To the novice an-
alyst, it is not clear how much sediment, in terms of
relative numbers of suspended particles, is represented
from these views, and this method does not display an
integrated view for all grid locations throughout a vol-
ume. Given the densities and particle volume informa-
tion of the suspended particulates, the concentration
values can be converted to numbers of particles per
unit volume. These quantities can then be rendered
using multidimensional multivariate (mdmv) methods
[3], including those for direct volume or particle render-
ing. For sedimentation, colormapped 2D (horizontal)
z-layers are another method commonly used to show
combined or single valued SSC.

(a) (b)

Figure 1: (a) point detail view with a log10 colormap
legend showing SSC at a grid location with many
smaller particles [2], and (b) Point detail view with a
log10 colormap legend showing SSC at a grid location
with fewer larger particles [2].

The problem domains just described are good can-
didates for exploration in our four-wall CAVE-like vir-

tual environment (VE) [4], especially for combination
views involving concentrations, vector quantities, and
other scalar fields [1]. However, rendering concentra-
tions as particles at interactive frame rates using tradi-
tional methods (such as texture-mapped primitives or
basic points [5, 6]) is computationally expensive and
can easily overload the VE graphics pipeline. There-
fore, this work describes an alternate means of visu-
alizing multi-scalar data with the introduction of the
Synthesized Cell Texture (SCT) algorithm. This hy-
brid technique indicates the added dimension of a scalar
profile variable within a three-dimensional (3D) cell in
terms of relative quantities of different size particles.
The SCT algorithm can display the additional informa-
tion throughout a prescribed volume at a desired slice
resolution (given existing hardware constraints), and
is compared with two basic particle rendering meth-
ods: flat-shaded colormapped points and quadrilater-
als. Both methods can be considered simpler (and
faster) forms of the general texture-mapped primitives
approach. Comparison with other mdmv methods re-
quires additional considerations for perceived effective-
ness with human subjects, and will be presented in a
future publication.

The remainder of this paper is organized into sections
on previous work, implementation details for the SCT
algorithm, points, and quadrilaterals, and a compara-
tive analysis of the results. Enhancements to the SCT
algorithm are presented, including optimizations to re-
duce startup time and incorporate time-varying data.
Finally, conclusions are drawn and future directions for
research are described.

PREVIOUS WORK
Effectively representing mdmv scalar fields is an ac-

tive area of research in information visualization. Two
important goals are: (i) to discover the values for data
within a region, and (ii) locate data with specific val-
ues [7]. Good visual methods often help the researcher
find areas of interest and correlations between variables.
With the ability of computers to convey more informa-
tion at once comes a challenge to determine what visual
attributes are best perceived by humans [8]. Hence eval-
uating the effectiveness of a technique is dependent on
perception-based user studies [9], as well as rendering
speed and memory efficiency.

An excellent overview and classification scheme for
mdmv visualizations is presented by Nielson et al. [3],
although many others are available. Statistical and in-
formation analysis motivates the use of various 2D and
3D graphical methods, with the objective of conveying
information about m-dimensional dependent variables
(one convention terms this the multivariate aspect) for
n-dimensional independent variables (the multidimen-



sional aspect). For our sedimentation application, SSC
represents the dependent variable for the 5D indepen-
dent variables of longitude, latitude, depth, time, and
grain size. Animation is often used to convey changes
in dependent variables over time, but displaying SSC
values for the remaining four dimensions in 3D space
is more problematic. One category of mdmv methods
encodes data information to color and geometric at-
tributes of an object (often termed a glyph or icon)
[10].

In terms of rendering particle information, a quadri-
lateral can be considered a glyph with the attributes
of color (four components), shape, size, and texture.
Any number of these attributes could be mapped to
the magnitude of a different scalar field, but perception-
based studies determine which attributes can be effec-
tively utilized [8]. Flow visualization often uses texture-
mapped quadrilaterals (or basic colormapped points) to
represent particles [5, 6, 11–13]. The SCT algorithm in-
corporates the concept of a glyph at two levels. In this
study, an SCT glyph for a particle is considered to be
a 4x4 array of pixels from a 2D texture with the same
attributes as a quadrilateral. However, an SCT glyph
could also represent the information for a 3D cell vol-
ume (containing many particles) at a spatial location.
Future studies will compare the SCT algorithm using
the cell-based glyph with other mdmv methods appro-
priate for that representation [14, 15].

Particles for flow visualization may also be rendered
by some number of pixels in an overall texture that are
then advected over time. These include such methods
as spot noise, line integral convolution (LIC), and tex-
ture advection [16–20]. These pixel-based particles are
generally massless and are injected into the flow at a
specific time. Any size, color, or shape variability is
only used to indicate direction and orientation of flow
and is not tied to any particular scalar field.

Scalar fields are also commonly represented by vol-
ume visualization methods. Volume visualization gen-
erally involves the rendering of volumetric data sets rep-
resenting 1D scalar quantities at specific points [21, 22].
The challenge is to classify what the scalar values rep-
resent (such as tissue or bone) as indicated by different
colors and opacities. Several methods approximate the
underlying integral defining the blending of values (such
as splatting or texture-based methods), or show 2D
slices of the volume (such as projection-based methods),
or 3D surfaces [22]. Research has also been done on try-
ing to show two or three independent variables at once
in a volume visualization [23]. More work is needed
on effectively representing larger numbers of scalars si-
multaneously. The SCT algorithm can be considered a
volume visualization method, but with the emphasis on
generation of the colors and opacities of a multi-scalar

field, rather than on the classification of a single scalar
field.

The SCT algorithm is unique since it can show a
number of different size particles in an integrated, over-
all manner over a chosen volume of cells. By displaying
particles at the highest resolution possible (i.e., using
one or few pixels per particle with varying opacity), a
greater ratio of the number of actual particles present
to the number that can be displayed can be realized.
Where there are large differences in numbers of par-
ticles, this texture-based method can show values in
a greater range than two other commonly used glyph-
based methods, colormapped quadrilaterals and points.
The SCT algorithm allows more detail information to
be shown because of the larger pool of particles that
can be displayed at one time. The maximum number
of glyphs is utilized, given the limitations of the hard-
ware and desired slice resolution chosen. Comparisons
with these other glyph-based methods are described in
this work and show the effectiveness of the SCT vol-
ume visualization technique. Data from coastal zone
sedimentation modeling serves as a testbed for the ap-
plicability of this algorithm.

Although the main variable of interest in the sedi-
mentation domain is concentration, the SCT method
can be applied to any scalar where different charac-
teristics can be represented by four parameters: glyph
color, size, and opacity, as well as number of glyphs per
category (bin).

IMPLEMENTATION
In this discussion, the term cell refers to a 3D volume

immediately surrounding a grid location in the physical
domain with dimensions ∆x∆y∆z. A slice refers to
the 2D texture-mapped primitive centered at the grid
location as described by Vickery in [2] and shown in
Figure 2. The 2D texture is generated from information
about the physical scalar quantities within a 3D cell.
The term pixel refers to the smallest unit of the 2D
texture that has both color and opacity. Since the grid
points are packed so densely in the z direction close to
the sea floor (our main area of interest), we can visualize
the physical scalar quantities for an entire 3D volume as
layers comprised of 2D slices. The term glyph will refer
to the entity that represents a scalar value for a particle,
whether it is a 4x4 grouping of pixels in the texture, a
colormapped point primitive specified in the computer
graphics language known as OpenGL (also known as an
OpenGL point), or a colormapped quadrilateral.

The first stage of the SCT method provides a means
of creating a visualization of a volumetric multi-scalar
field that can be specified in terms of a maximum slice
resolution (or density of represented values). This max-
imum resolution is used to scale the multi-scalar field



Original Points

New Triangle
Primitive

Figure 2: New grid cell with eight triangles (trifan),
superimposed on the original grid [2].

for the data over the entire volume, including all time
series. Therefore, a prescribed volume of data for any
time step can be displayed and compared relative to
the same scale with other volumes within the same
time step or across multiple time steps. The values
within a 3D cell are positioned as non-overlapping par-
ticle glyphs equally distributed within a 2D region of
size ∆x∆y centered at the original grid location. In
other words, this algorithm scales the data for each cell
to the maximum values found throughout the data set,
and then randomly distributes the values within a flat-
tened 2D region. For this reason, it will be referred
to as the Scaling and Distribution or SAD algorithm.
This approach facilitates viewing of closely spaced lay-
ers as commonly found in sigma coordinate grids (in
this case, logarithmic spacing in the vertical direction
with 31 levels). This portion of the algorithm can be
applied regardless of how the multi-scalar entities are
rendered (i.e. as parts of a 2D texture-mapped slice,
colormapped OpenGL points, or colormapped quadri-
laterals).

The second stage provides a hardware texture map-
ping algorithm to render the multi-scalar values. In
this approach, a 2D texture for each slice is synthe-
sized from the location information from the first step,
and then rendered at the correct grid location within
the volume. This method trades off computation time
(to synthesize the texture) and texture memory against
the number of geometric primitives which must be sent
through the graphics pipeline of the host system. Hence
the name Synthesized Cell Texture or SCT algorithm is
appropriate. The SCT algorithm incorporates the SAD
algorithm as part of the rendering of the volume visu-
alization. Therefore, SCT will also refer to the volume
visualization algorithm in general.

The first version of the SCT algorithm converted the
twenty scalar values at each grid point represented in
units of Kg/m3 to numbers of particles of each bin1 [2].

1In the sedimentation data, each bin represents values of a

A 2D texture mapping scheme was employed to display
the particles where a texture for each cell layer was
synthesized to show the relative numbers of particles
as same size pixels using a different color for each bin
(twenty colors in all). This method suffered from two
major shortcomings: particles of vastly different sizes
were displayed as the same size, and there were too
many colors to distinctly distinguish between particle
bins.

This original algorithm was recently enhanced to al-
low a custom bin consolidation scheme to be applied to
reduce the number of bins to sixteen (or less), such that
a glyph with a 4x4 footprint could be used to show grain
size differences2 [24, 25]. Bins may also be grouped into
more general categories to reduce the number of colors
that must be represented, or an automatic color assign-
ment algorithm can be used. Four colors represented
the sediment types: clay, silt, sand, and gravel [25]. A
particle sizing scheme was also implemented such that
particles from different bins are represented as varying
size particles. This was accomplished by using a 4x4
pixel glyph in the SCT algorithm as the basic parti-
cle footprint and coloring from one to sixteen pixels to
show the relative sizing of particles.

Figure 3 shows the results of these enhancements for
a single texture slice for a cell at the hill location. Here
bin differences are indicated by particle size and color.
Large numbers of clay particles are shown by one pixel
green glyphs, as well as several sizes of silt particles
(red), and very few larger sand particles (cyan). A
breakdown of the bin categories can be seen in Ta-
ble 1. A twelve layer volume visualization using the
enhanced algorithm with 3D point detail profiles for
both hill and hole locations is illustrated in Figure 4
and Figure 5. Careful observation of the volume visu-
alization shows the difference between a grid location
where many smaller particles result in very low sedi-
ment concentration (hill), and one where fewer larger
particles make up a much larger sediment concentration
(hole)3. This is contrary to what one might think from
just looking at the detail profiles (see Figure 1). This
is due to the differences in the grain sizes (diameters
of an assumed spherical particle) between bins, and the
part it plays in the mass per volume computation for
sediment concentration (Kg/m3) [2, 25].

In the latest version of the SCT method, the SAD
and SCT stages are modularized and separated to
allow comparisons with two flat-shaded colormapped

particular grain size (diameter) of sediment.
2For the sedimentation data, this is the USDA soil texture

classification that reduced the bins to fourteen, although a generic
bin grouping or reduction algorithm could also be used.

3The color version of this paper illustrates
this much better and is available online at
http://www.erc.msstate.edu/∼rvickery/publications.html



Figure 3: Difference in color separation and particle
size is shown in a flat single bottom layer texture syn-
thesized by the enhanced algorithm for the hill location
[25].

Table 1: Bin Categories with pixel and color assign-
ments.

Bins / Num Pixels Soil Type Color

1 Clay Green
2-5 Silt Red
6-10 Sand Cyan
11-16 Gravel Dark blue

representations for particles: OpenGL points (Points)
and quadrilaterals (Quads). Both methods can be
considered simpler (and faster) forms of the general
texture-mapped primitives approach. Detailed results
show where the performance of the methods differ.
The system is optimized for deployment in a four
wall CAVE-like virtual environment (VE). Performance
data are obtained using extensive built-in graphics
statistics gathering features provided by the OpenGL
PerformerTM toolkit developed by Silicon Graphics,
Inc. (SGI). This scene graph based software toolkit is
designed to help optimize applications and discover bot-
tlenecks running on SGI supported platforms [26, 27].
Initial computation times for each of the three meth-
ods are recorded using the SGI high-resolution syssgi
hardware clock with sub-microsecond accuracy and ac-
cessible through OpenGL PerformerTM4. Although the
Points representation is included in the performance
comparisons, it is not suitable for actual implementa-

4This is much more precise than the commonly used time-
of-day clock which only has an accuracy of 1-10 milliseconds,
depending on the hardware platform.

Figure 4: Twelve layer volume visualization using the
enhanced algorithm with point detail profiles for both
hill and hole locations [25].

tion in our application since the points are not all the
same approximate distance from the viewer. OpenGL
points are rendered to a specific “point size” which al-
ways take up the same number of pixels on the display
regardless of the proximity of the viewer (making them
change in size relative to surrounding geometry depend-
ing on the viewer location). OpenGL points may be ap-
plicable in other situations where the particles are all
viewed from approximately the same distance.

The test configurations were chosen to investigate the
limitations of the three algorithms in the following sce-
narios:

1. A large ∆x∆y shallow water region that maximizes
the amount of texture memory used that includes
both dense and sparse regions of particles, but
fewer layers (which means less blending of layers
during rendering). Methods which use primitives
for individual particles would do less work in sparse
regions. Machine A was chosen for this purpose
since it has the largest amount of texture memory
and the most advanced SGI graphics pipeline (see
Table 2). This region contains 252 grid locations
per z-direction layer and tests were run from 1 to
8 layers.

2. A smaller shallow water region containing dense
concentrations of particles over the full 31 layers
of the dataset (132 grid locations per z-direction
layer). This configuration maximizes the number
of glyphs and the blending of layers during ren-
dering. Since the application is designed for our
CAVE-like VE, Machine B is the testbed for this



Figure 5: Closeup of the hole location [25]. Note that
the smaller grain size particles (shown higher up on the
hill) are stripped away at the deeper locations.

scenario. Data was collected for layers 1 through
8, then every fourth layer through 31.

3. The same smaller shallow water region on Machine
B, but studying the effects of increasing slice reso-
lution on rendering for 3 layers. Data was collected
for resolutions of 16x16 through 128x128.

Each test case was run 5 times and the times were
averaged. Since OpenGL has the requirement that the
length and width of texture images must be a power of
2, the slice resolutions were chosen accordingly [28].

Table 2: Machine configurations for benchmark tests.

Machine A Machine B

Type Onyx 2 Onyx 2
Graphics Infinite Reality 3 Infinite Reality
Num Processors 4 8
RAM (GB) 4 4
Texure Memory (MB) 512 128
Usage High-end Desktop CAVE-like VE

RESULTS
The frame rate comparison in Figure 6 shows that

the SCT algorithm executes at 66 fps for up to 5 lay-
ers of the shallow water region, then decreases to 33
fps for layers 6 and 7. This occurs because OpenGL
PerformerTM attempts to match the frame rate of the
scene rendered to the video refresh rate [26]. For Ma-
chine A, this rate is 66 Hz. Once the frame rate drops
below 12 fps, the rate is not affected by the video re-
fresh rate, and is based simply on the number of times
the scene can be rendered during a second.

 0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

F
ra

m
e 

R
at

e 
(f

ra
m

es
/s

ec
)

Number of Layers

Frame Rate vs. Number of Layers at 64x64 Cell
Resolution for Large Shallow Water Region on Machine A

SCT
Quads
Points

Figure 6: Frame Rate vs. Number of Layers for Ma-
chine A.

 0

 5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9

F
ra

m
e 

R
at

e 
S

pe
ed

up
 R

at
io

Number of Layers

Frame Rate Speedup Ratio vs. Number of Layers at 64x64 Cell
Resolution for Large Shallow Water Region on Machine A

SCT/Quads
SCT/Points

Figure 7: Frame Rate Speedup Ratio vs. Number of
Layers for Machine A.

As shown in Figure 6, the Quads algorithm rendered
the first layer of the configuration at just under 9 fps,
and the Points algorithm at around 7 fps. Note that
the Quads method is generally faster than Points since
the Infinite Reality graphics pipeline is optimized for
triangles (a quadrilateral is internally split into 2 tri-
angles), and the pipeline must do extra work to draw
each point to the point size specified in the Points al-
gorithm. In contrast to the SCT algorithm, neither the
Quads nor Points methods could produce acceptable
frame rates for two or more layers.

The results can also be shown in terms of a frame rate
speedup ratio of SCT vs. Quads or Points, which can
be computed in terms of fpsSCT /fpsOther. In Figure 7,
the frame rate speedup ratio for SCT vs. Quads varies
from 7 to just under 35, with higher speedups occur-
ring when the Quads method bogs down the graphics



pipeline when trying to render more layers. For SCT
vs. Points, the frame rate speedup ratio varies from 10
to 44.

Another perspective can be seen in Figure 8 and Fig-
ure 9. This series of runs was performed in the VE
configuration on Machine B for the shallow water re-
gion. Figure 8 shows frame rate vs. number of layers
for the SCT, Quads, and Points algorithms for a low
slice resolution of 16x16. In this case, the frame rate
for all methods is considerably affected by the amount
of blending required for the large number of glyphs dis-
played in a vertical column. The Quads and Points
algorithms can maintain a frame rate above 10 fps for
up to 5 layers. At 8 layers, a frame rate of around 6 fps
is still navigable in the VE, but difficult. The SCT al-
gorithm starts as high as 48 fps for 1 layer, stays above
10 fps for up to 10 layers, and 6 fps for up to 16 layers.
At a slice resolution of 16x16, each layer adds about 2
MB of texture memory, and Machine B has enough to
view all 31 layers. The end result is that the SCT algo-
rithm is still up to 2 times faster than Quads or Points
in cases where the texture memory is not filled to ca-
pacity, but where there may be many glyphs to display
(see Figure 9).

 0

 5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

F
ra

m
e 

R
at

e 
(f

ra
m

es
/s

ec
)

Number of Layers

Frame Rate vs. Number of Layers at 16x16 Cell Resolution 
for Shallow Water Region on Machine B (CAVE configuration)

SCT
Quads
Points

Figure 8: Frame Rate vs. Number of Layers for Ma-
chine B.

Figure 10 shows the same VE shallow water region
setup for 3 layers at differing slice resolutions of 16x16
through 128x128. The Quads and Points algorithms
can maintain a frame rate of 16 fps at 16x16, but only
4 to 5 fps at 32x32. In contrast, the SCT algorithm can
maintain a frame rate of 24 fps up to a resolution of
64x64. In other words, the SCT algorithm can display
4 to 16 times the number of particles at a faster frame
rate than the other two algorithms (for this particular
case). In cases where there are very few particles in
a particular bin, the SCT algorithm is more likely to

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25 30

F
ra

m
e 

R
at

e 
S

pe
ed

up
 R

at
io

Number of Layers

Frame Rate Speedup Ratio vs. Number of Layers at 16x16 Cell
Resolution for Shallow Water Region on Machine B (CAVE config.)

SCT/Quads
SCT/Points

Figure 9: Frame Rate Speedup vs. Number of Layers
for Machine B.

be able to represent those particles with a higher reso-
lution than is possible with the other algorithms. The
numbers of glyphs computed for each bin at each resolu-
tion for this configuration are shown in Table 35. Note
that bin 7 is not represented at the 16x16 resolution,
but is represented at 32x32 and higher. This indicates
that with a higher slice resolution, the SCT algorithm
can display values in a greater range than the Quads
or Points methods at an acceptable frame rate. This
capability allows more detail information to be shown
because of the larger pool of particles that can be dis-
played at one time, and improves with increasing slice
resolution.

Table 3: Number of actual consolidated glyphs used
in volume by resolution and particles per glyph (PPG)
for three layers of the shallow water region. Values are
shown for the first seven bins.

Bin 16x16 32x32 64x64 128x128

1 12302 49212 196885 787618
2 18088 72463 289876 1.15953E+06
3 5100 20345 81392 325642
4 4713 18840 75332 301350
5 1663 6522 26171 104574
6 404 2110 8771 35073
7 0 73 524 2342

Total 42270 169565 678951 2.71613E+06

PPG 6.18182E+09 1.54104E+09 3.84867E+08 9.62051E+07

It is useful to note that frame rate comparisons do
not tell the whole story. Although the SCT algorithm
can achieve a higher frame rate than either Points or
Quads, it does so at the expense of more memory and
startup processing time to synthesize the texture. Fig-

5For this particular dataset, the consolidation scheme resulted
in values for only seven of the bins. Other datasets, such as those
for hurricane weather events, would have values in all of the bins,
representing more of the larger size particles.



 0

 5

10

15

20

25

30

20 40 60 80 100 120

F
ra

m
e 

R
at

e 
(f

ra
m

es
/s

ec
)

Cell Resolution

Frame Rate vs. Cell Resolution for 3 layers of
Shallow Water Region on Machine B (CAVE configuration)

SCT
Quads
Points

Figure 10: Frame Rate vs. Slice Resolution for Machine
B.

ure 11 shows the startup times for execution of all
three algorithms. The time required per layer varies
linearly with all three methods, although the slope for
the SCT algorithm is much steeper (6.20 sec/layer for
SCT, 0.67 sec/layer for Quads, and 0.53 sec/layer for
Points). This slope can be converted to a general slope
of seconds required per megabyte of memory: SCT re-
quires 0.10 sec/MB, Quads requires 0.06 sec/MB, and
Points requires 0.18 sec/MB (see Figure 12). This may
seem counterintuitive, but in reality all pixels in the
SCT texture must be assigned values, even if they do
not represent actual glyphs for particles (in which case
they would be transparent). The Quads and Points
algorithms only use memory for the actual glyphs ren-
dered. The fact that the Quads algorithm takes less
time per megabyte than the Points is due to the similar
amount of time it takes for both methods to locate the
glyphs, with only slightly more work required to place
four closely spaced points for a quadrilateral than a
single point. Therefore, the Quads algorithm requires
more memory, but the time per MB is less. Figure 13
confirms the additional time required for the SCT al-
gorithm: it is about 9.4 times slower than the Quads,
and 11.7 times slower than the Points.

One goal of this study was to determine the limita-
tions of the SCT algorithm, and Machine A was used
for this purpose. There was only one case where the
SCT algorithm did not render the visualization, and
this occurred when it could not complete the 8 layer
configuration because a process maximum shared mem-
ory limit of 500 MB was exceeded (see Figure 6). This
was due to an OpenGL PerformerTM memory mapping
problem during the attempted allocation of about 500
MB of texture memory, as indicated in Figure 12 and
documented in the release notes [29].

 0

 5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9

S
ta

rt
up

 T
im

e 
(s

ec
)

Number of Layers

Startup Time vs. Number of Layers at 64x64 Cell
Resolution for Large Shallow Water Region on Machine A

SCT
Quads
Points

Figure 11: Startup Time vs. Number of Layers for
Machine A.

 0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9

T
ot

al
 M

em
or

y 
(M

B
)

Number of Layers

Total Memory vs. Number of Layers at 64x64 Cell
Resolution for Large Shallow Water Region on Machine A

SCT
Quads
Points

Figure 12: Total Memory vs. Number of Layers for
Machine A.

The SCT algorithm has been shown to take consider-
ably more memory and startup time than either of the
other two methods. However, both aspects can be eas-
ily justified as reasonable for the increased frame rate
during scene rendering. Texture memory is available in
ever increasing amounts on new computers expressly for
this purpose [30], and massive amounts of main mem-
ory are utilized to reduce file access latencies. At the
point where the texture is computed, there is only color
and transparency assigned based on bin type for each
glyph. This portion could easily be split by cell and
partitioned among several processors as described in
the next section on future enhancements.



 0

 2

 4

 6

 8

10

12

14

0 1 2 3 4 5 6 7 8 9

S
ta

rt
up

 T
im

e 
R

at
io

Number of Layers

Startup Time Ratio vs. Number of Layers at 64x64 Cell
Resolution for Large Shallow Water Region on Machine A

SCT/Quads
SCT/Points

Figure 13: Startup Time Speedup Ratio vs. Number of
Layers for Machine A.

FUTURE ENHANCEMENTS

Three straightforward enhancements to the SCT al-
gorithm include adding a variable size glyph, paralleliz-
ing the texture synthesis portion of the algorithm, and
extending the method for time-varying data. Imple-
menting a variable size glyph (such as 3x3 or 4x5) is
complicated by the OpenGL optimization requirement
that the length and width of a texture image be a power
of 2 [28]. The leftover pixels computed during the tex-
ture synthesis stage would need to be randomly dis-
tributed and made transparent. This would allow bet-
ter utilization of the pixels in the texture and more bins
to be represented.

The parallelization of the texture synthesis portion of
the SCT algorithm can be accomplished by partitioning
the total cells to be textured among available processors
on the host and neighboring computers. For instance,
the longest startup time for the SCT algorithm was just
under 45 seconds for 1764 cells of the shallow water re-
gion. If the task was simply split among 20 processors,
then each one would compute the texture for about 88
cells. Even with the added overhead of communication
and other process loads, it seems reasonable that the
overall startup time of the SCT algorithm could be re-
duced to less than 5 seconds.

Extending the SCT algorithm for time-varying data
requires that the bin information for each glyph be
saved along with the texture for the current time step,
in order to compute the differences in the texture for
the next time step. The same texture memory can be
used and only glyph locations within the texture that
must change are affected.

CONCLUSIONS

In this study the SCT method was compared with
two glyph-based representations: OpenGL points and
quadrilaterals. Preliminary performance statistics
gathered in the comparisons show the SCT method to
have an increase in rendering speed of up to 44 times
faster than the other methods, depending on the volume
to be displayed and the host system. For a given frame
rate, performance data show that the SCT algorithm
can display from 4 to 16 times the amount of informa-
tion of the Quads or Points algorithms at a faster frame
rate in the VE.

The SCT method has been successfully applied to
oceanographic sedimentation data with up to twenty
scalar values per grid point. In this case the grid is
regular in the xy direction and sigma coordinate in the
z direction (and exponentially distributed with closely
packed layers close to the bottom of the grid). The
method may be applied to other problem domains as
well. Future publications will describe its use in the
visualization of dust aerosol transport in global circu-
lation models [31].

Future work includes adding the enhancements de-
scribed, and performing a user study on the effective-
ness of the SCT representation as an mdmv method.

References
[1] Keen, T. R.; R. J. Vickery; P. Flynn; R. H. Stavn;

W. McBride, 2001. “Scientific Visualization of Sedi-
ment Dynamics in the Bottom Boundary Layer.” In
7th Int. Conf. Estuarine and Coastal Model., Proc. St.
Pete Beach, Florida.

[2] Vickery, R. J.; T. R. Keen; R. J. Moorhead; R. J. Brou;
D. W. Carruth; S. M. Doane, 2002. “Volume Visual-
ization of 5D Sedimentation Models.” In Visualization
and Data Analysis 2002, edited by R. F. Erbacher;
P. C. Chen; M. Groehn; J. C. Roberts; C. M. Wit-
tenbrink. San Jose, CA, volume 4665 of Proceedings of
SPIE, 165–176.

[3] Nielson, G. M.; H. Hagen; H. Müller, editors, 1997. Sci-
entific Visualization: Overviews, Methodologies, and
Techniques. IEEE Computer Society, Los Alamitos,
CA.

[4] Cruz-Neira, C.; D. J. Sandin; T. A. DeFanti, 1993.
“Surround-Screen Projection-Based Virtual Reality:
The Design and Implementation of the CAVE.” In
SIGGRAPH 93 Conference Proceedings, edited by J. T.
Kajiya. ACM SIGGRAPH, Addison Wesley, Annual
Conference Series, 135–142. ISBN 0-89791-601-8.

[5] Lum, E. B.; K.-L. Ma, 2002. “Interactivity is the Key
to Expressive Visualization.” ACM SIGGRAPH Com-
puter Graphics 36, no. 3, 5–9.



[6] Kuester, F.; R. Bruckschen; B. Hamann; K. I. Joy,
2001. “Visualization of Particle Traces in Virtual En-
vironments.” In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology. ACM Press,
Baniff, Alberta, Canada, 151–157.

[7] Wegenkittl, R.; H. Löffelmann; E. Gröller, 1997. “Vi-
sualizing the Behavior of Higher Dimensional Dynam-
ical Systems.” In Proceedings Visualization ’97. ACM
Press, New York, NY, 119–125.

[8] Ware, C., 2000. Information Visualization: Perception
for Design. Morgan Kaufmann, San Francisco.

[9] Ferwerda, J. A., 2002. “Psychometrics 101: How to De-
sign, Conduct, and Analyze Perceptual Experiments in
Computer Graphics.” ACM SIGGRAPH 2002 Course.

[10] Levkowitz, H., 1991. “Color Icons: Merging Color and
Texture Perception for Integrated Visualization of Mul-
tiple Parameters.” In Proceedings Visualization ’91.
IEEE Computer Society Press and ACM, 164–170.

[11] Max, N.; R. Crawfis; B. Becker, 1995. “Applications of
Texture Mapping to Volume and Flow Visualization.”
In Graphicon 95.

[12] Max, N.; B. Becker, 1996. “Flow Visualization Us-
ing Moving Textures.” In Proceedings of ICASE/LaRC
Symposium on Visualizing Time Varying Data, edited
by D. Banks; T. Crockett; S. Katy. NASA Conference
Publication, volume 3321, 77–87.

[13] Schroeder, W.; K. Martin; W. Lorensen, 1998. The
Visualization Toolkit, An Object-Oriented Approach to
3D Graphics. Prentice-Hall PTR, Upper Saddle River,
NJ 07458, 2nd edition. ISBN 0-13-954694-4.

[14] Taylor, R., 2002. “Visualizing Multiple Fields on the
Same Surface.” IEEE Computer Graphics and Appli-
cations 22, no. 3, 6–9.

[15] Laidlaw, D. H., 2001. “Loose, Artistic ”Textures” for
Visualization.” IEEE Computer Graphics and Appli-
cations 21, no. 2, 6–9.

[16] de Leeuw, W.; R. van Liere, 1998. “Comparing LIC and
Spot Noise.” In Proceedings Visualization ’98. IEEE
Computer Society Press. ISBN 1-58113-106-2, 359–365.

[17] Heidrich, W.; R. Westermann; H.-P. Seidel; T. Ertl,
1999. “Applications of Pixel Textures in Visualization
and Realistic Image Synthesis.” In ACM Symposium
on Interactive 3D Graphics. ACM, 127–134.

[18] Jobard, B.; W. Lefer, 1997. “The Motion Map: Ef-
ficient Computation of Steady Flow Animations.” In
Proceedings Visualization ’97. IEEE Computer Society
Press and ACM, 323–328.

[19] Jobard, B.; G. Erlebacher; M. Hussaini, 2000.
“Hardware-Accelerated Texture Advection for Un-
steady Flow Visualization.” In Proceedings Visualiza-
tion ’00. IEEE Computer Society Press and ACM, 155–
161.

[20] Rezk-Salama, C.; P. Hastreiter; C. Teitzel; T. Ertl,
1999. “Interactive Exploration of Volume Line Inte-
gral Convolution Based on 3D Texture Mapping.” In
Proceedings Visualization ’99. IEEE Computer Society
Press and ACM, 233–240.

[21] Kaufman, A., editor, 1991. Volume Visualization.
IEEE Computer Society Press, Los Alamitos, CA.

[22] Meißner, M.; J. Huang; D. Bartz; K. Mueller; R. Craw-
fis, 2000. “A Practical Evaluation of Popular Volume
Rendering Algorithms.” In Proceedings Volume Vi-
sualization and Graphics Symposium 2000, edited by
S. N. Spencer. ACM SIGGRAPH, New York, NY, 81–
90. ISBN 1-58113-308-1.

[23] Crawfis, R. A., 1995. “New Techniques of the Scientific
Visualization of Three-Dimensional Multi-variate and
Vector Fields.” Ph.D. thesis, Lawrence Livermore Na-
tional Laboratory, University of California, Livermore,
CA.

[24] Pfannkuch, H. O.; R. Paulson. Grain
Size Distribution and Hydraulic Properties.
http://www.cs.pdx.edu/ ian/geology2.5.html.

[25] Vickery, R. J.; T. R. Keen; R. J. Moorhead; J. Meyer;
R. J. Brou; A. M. Noble; J. P. Martin; S. M. Doane,
2002. “Interactive Poster: Effects of Relative Parti-
cle Sizing and Bin Consolidation Enhancements to a
5D Volume Visualization Algorithm.” In Visualization
2002 DVD. IEEE Computer Society Press and ACM,
Boston, MA.

[26] Eckel, G. IRIS Performer Programmer’s Guide. Silicon
Graphics, Inc. Document Number 007-1680-040.

[27] Rohlf, J.; J. Helman, 1994. “IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics.” In SIGGRAPH 94 Conference Proceedings,
edited by A. S. Glassner. ACM SIGGRAPH, Addison-
Wesley, Annual Conference Series, 381–394. ISBN 0-
89791-667-0.

[28] Woo, M.; J. L. Neider; T. R. Davis; D. R. Shreiner,
1999. OpenGL Programming Guide, Third Edition.
Addison-Wesley, Reading, Mass.

[29] OpenGL Performer Version 2.5 Release Notes.

[30] Rezk-Salama, C.; K. Engel; M. Bauer; G. Greiner;
T. Ertl, 2000. “Interactive Volume Rendering
on Standard PC Graphics Hardware Using Multi-
Textures and Multi-Stage Rasterization.” In SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware Conference Proceedings. ACM SIGGRAPH, Ad-
dison Wesley, Interlaken, Switzerland, 109–118.

[31] Tegen, I.; A. A. Lacis, 1996. “Modeling of Particle Size
Distribution and Its Influence on the Radiative Proper-
ties of Mineral Dust Aerosol.” Journal of Geophysical
Research 101, no. D14, 19237–19244.


