

TetFusion: An Algorithm For
Rapid Tetrahedral Mesh Simplification

Prashant Chopra and Joerg Meyer*
Mississippi State University Engineering Research Center

Figure 1: Four macroLoDs (defined in section 3.1) of the 12,936 elements spx dataset, created in less than 1 second on an SGI R10000
194MHz, 2048 MB RAM. (a) The original mesh (b) 20.06% reduced (c) 31.20% reduced (d) 38.29% reduced. Only a portion of the mesh
(cells that intersect a vertical cutting plane in the XY plane at a specific Z value) is rendered to show the interior elements. (Dataset
courtesy: Peter Williams, Lawrence Livermoore National Laboratory).

Abstract

This paper introduces an algorithm for rapid progressive
simplification of tetrahedral meshes: TetFusion. We describe how
a simple geometry decimation operation steers a rapid and
controlled progressive simplification of tetrahedral meshes, while
also taking care of complex mesh-inconsistency problems. The
algorithm features a high decimation ratio per step, and inherently
discourages any cases of self-intersection of boundary, element-
boundary intersection at concave boundary-regions, and negative
volume tetrahedra (flipping). We achieved rigorous reduction
ratios of up to 98% for meshes consisting of 827,904 elements in
less than 2 minutes, progressing through a series of level-of-
details (LoDs) of the mesh in a controlled manner. We describe
how the approach supports a balanced re-distribution of space
between tetrahedral elements, and explain some useful control
parameters that make it faster and more intuitive than ‘edge
collapse’ -based decimation methods for volumetric meshes [3, 18,
20, 21]. Finally, we discuss how this approach can be employed
for rapid LoD prototyping of large time-varying datasets as an aid
to interactive visualization.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – surfaces and object
representations.

Keywords: mesh simplification, multi resolution, level-of-detail,
unstructured meshes.

* { prash | jmeyer} @erc.msstate.edu
 http://www.cs.msstate.edu/~graphics

1 INTRODUCTION

Large and highly detailed volumetric models are very common
now in research environments due to improvements in hardware
technology and computational methods. Lately, they have found
their place in research areas like computational vector field
simulation, finite element analysis, medical imaging, range
scanning, and large-scale visualization. Scientists employ a
number of techniques like contour detection and iso-contouring,
contour connection, iso-surface generation, voxel-based
tessellation, etc., to create these models, mostly to simulate a
natural or engineering phenomenon. However, since these
techniques do not always take the requirements for efficient
rendering into account during creation stages, the resulting models
often turn out to be very complex in terms of the number of
geometric primitives and their spatial relationship. Thus, when
these models are broken down to rendering primitives like
triangles or quadrilaterals for the purposes of visualization, the
large number of primitives poses a challenge to interactive
rendering. Each of these primitives might have associated
attributes like scalar values, vector tuples, etc., as results of
scientific simulations [2, 11, 12], or direct visual attributes like
color, transparency, texture, normal vector information, etc. It is
well known that such meshes are often inefficient in terms of
storage, access, and transmission over computer network media.

 To add to these complexities, some scientific and engineering
simulations output four- or higher-dimensional (e.g., time-
varying) datasets in the form of higher order simplicial complexes
(polyhedral meshes), both homogeneous and heterogeneous. The
most common examples of homogeneous polyhedral meshes are
tetrahedral grids, because of factors like the convex shape of the
tetrahedral elements, which makes them suitable for volume
rendering. A typical example is an earthquake simulation dataset
(11,800,639 vertices, 69,448,288 tetrahedra), which takes about
3.3 gigabytes of storage space just for the basic node geometry

and the tetrahedral connectivity information, and an additional
141 megabytes for associated vector information for 120 time-
steps in each node. To visualize such large-scale volumetric
meshes with time-varying attributes interactively is still an open
research arena.

 Mesh simplification has been addressed in a number of
publications in recent years as a preprocessing step to reduce the
geometric complexity of both polygonal and polyhedral meshes.
Both refinement- and decimation-based strategies have been
explored. Most of these publications extend ‘edge collapse’ -based
decimation methods to volumetric meshes, focusing on accurate
error evaluation metrics [3, 21], while also preventing mesh-
inconsistencies [3, 18, 21]. These methods work very well as
metrics-guided simplification tools. However, the time-
complexities of these algorithms (please see section 2.2)
discourage their application upon massive datasets of the order of
one million or more elements.

 This paper describes a rapid tetrahedral mesh simplification
framework, which incorporates the constraints on mesh
consistency, as well as it binds the geometric and attribute field
errors; while also providing better spatial control over LoDs.
Specifically, we employ a symmetric reduction operation:
TetFuse, which suits the natural re-distribution of volume among
a reduced number of elements upon every decimation step. We
present TetFusion as a progressive simplification method to create
macroLoDs of both static and time varying tetrahedral meshes.
Finally, we discuss how this approach can assist in interactive
visualization of time-varying volumetric datasets of tetrahedral
nature.

2 RELATED WORK

We classify recent publications in the area of mesh simplification
broadly into two categories: those based upon polygonal mesh
reduction techniques, and those employing polyhedral mesh
reduction techniques.

2.1 Polygonal Mesh Simplification

 The class of algorithms that simplify polygonal (2-manifold)
surface meshes fall into this category. Most of the work discussed
here is based on geometry reduction techniques, that eliminate one
or more geometric primitives at a time based on specific
constraining criteria, and then consolidate the mesh making use of
a smaller number of primitives. The area of polygonal mesh
simplification has seen some significant improvements lately.

 Schroeder et al. [16] propose a simple multi-pass vertex
decimation algorithm for triangular meshes. The hole resulting
from a vertex-removal is re-triangulated with a smaller number of
triangles. Turk [22] describes a surface re-tiling algorithm for
simplification, where new vertices are sprayed onto the original
mesh following topological and geometry constraints, which are
triangulated to yield an approximation of the original mesh.

 The work by Kalvin et al. [10] describes a computationally
efficient surface approximation algorithm, which identifies quasi-

coplanar faces over the mesh in form of patches, which are re-
triangulated with a smaller number of primitives. Their greedy
face-merging algorithm has a time complexity of O(N), N being
the number of polygon faces in the original mesh. Further, this
algorithm is more effective in reducing the polygon count in a
given polygonal mesh, because of the decimation of multiple
primitives per step.

 Hugues Hoppe [8] proposes a novel progressive continuous-
resolution representation of 2-manifold triangular meshes. He
claims that out of the three basic primitive mesh-simplification
operations of edge collapse, edge split and edge swap, an ‘edge
collapse’ is all that is needed for effective progressive
simplification of meshes. The primitive operation of ‘edge
collapse’ is presented as a completely reversible operation with
‘ vertex split’ as its counter-operation. This work shows how a
mesh could be represented as a basic mesh (the simplified
version) and a series of ‘ vertex split’ records that can be applied to
refine the basic mesh back to the original representation at full
resolution. This representation permits geo-morphing and
progressive transmission along with significant compression and
support for selective refinement.

 Schroeder [17] extends his previous work on triangle mesh
decimation [16]. He proposes a new algorithm that guarantees a
specified level of reduction, but modifies the topology while
performing local decimation to achieve the result. He includes two
additional primitive operations in the algorithm: vertex split, and
vertex merge. Compression ratios as high as 200:1 can be
achieved for some models. Finally, Garland and Heckbert [5]
suggest a more organized way of representing error metrics in
terms of quadrics for efficient calculation of hierarchy for view-
dependent simplification using edge collapses.

2.2. Polyhedral Mesh Simplification

Only a few attempts have been made towards polyhedral mesh
simplification lately. Both refinement- and decimation- based
strategies have been explored in this pursuit. For a detailed note
on these strategies, we suggest a reference to the survey report on
multi-resolution modeling by M. Garland [4]. This section focuses
specifically on decimation strategies because they closely relate to
our methods described in the next section.

 Trotts et al. [20] extend polygonal geometry reduction
techniques for tetrahedral meshes. The authors propose a
tetrahedral collapse operation as a sequence of three edge
collapses, while keeping the overall error (based on a unique
spline-segment representation of each tetrahedron) below a
tolerance range. The paper discusses problems and difficulties
specific to tetrahedral mesh simplification, and presents a
framework to employ edge-collapse to decimate tetrahedra.
Because the decimation strategy is based upon successive ‘edge
collapses’, the authors mention the overwhelming overheads for
maintaining an edge data structure for massive volumetric
datasets. Further, the time complexity of the algorithm presented
was not evident in the results or discussion [20].

 In their work on progressive tetrahedralization, Staadt and
Gross [18] explore a specialized case of progressive simplicial

complexes [14]: tetrahedra. Again, the most basic reduction
operation proposed is ‘edge collapse’ . In this manner, the
algorithm is very similar to the Progressive Meshes work by
Hoppe [8]. Besides preserving the topological and geometric
features as boundary, the algorithm elegantly handles previously
undiscussed cases of ‘negative tetrahedra’ (flipping) and
tetrahedron-boundary intersections at concave interiors. However,
because of the expensive dynamic mesh-consistency tests for
these special cases, the time complexity of this algorithm is
discouraging for rapid simplification of very large datasets. For
example, the algorithm took about 5 hours to simplify a 576,576
elements mesh [18].

 Trotts et al. [21] extend their earlier work on Tetrahedral Mesh
Simplification [20]. Their aim is to cause minimal error when
degenerating the mesh by binding the degeneration error to the
deviation of a simplified scalar field from the original field. This
way, they claim that the complex energy terms and weights in
error evaluation can be eliminated. Further, they revert to a single
edge collapse as the atomic decimation operation, unlike their
previous work, where they implement a sequence of three edge
collapses to result in one ‘Tetrahedron collapse’ operation. The
authors reason that the latter causes complex topological problems
and degeneration. This publication reports the simplification time
for a range of datasets, which make it evident that a more
rigorous, faster, and yet considerate and balanced simplification
approach could still be explored. Their best performing algorithm
reportedly took 2,557 minutes (about 42 hours) to simplify an
about 0.45 million elements Blunt Fin dataset by 83.9%.

 Emphasizing on accurate error evaluation techniques, Cignoni
et al. [3] present a framework for integrated error evaluation for
both domain and field approximations. This paper focuses on
accuracy in calculation and prediction of error introduced in the
domain of a tetrahedral mesh as a result of ‘edge-collapse’ -based
decimation strategies. Local accumulation, gradient difference,
and brute force strategies are explored to predict and evaluate
errors while incrementally simplifying a mesh. This paper is a
good survey of more accurate error constraint implementations,
and offers various options that need to be tested with rigorous
decimation strategies like TetFusion. Some error metrics are given
in the next section.

3 TETFUSION

We present TetFuse as a new reversible atomic decimation
operation for tetrahedral meshes. The idea is simple and intuitive:
take all the four vertices of a tetrahedron, and fuse them onto the
barycenter (the geometric center) of the tetrahedron. (Please see
Figure 2 for an illustration. A detailed discussion follows in
section 3.2.)

3.1 Definitions

Before presenting TetFuse as a new decimation operation, we
introduce some terms that will be used frequently hereafter in the
paper.

3.1 Prey Tetrahedron: A tetrahedron that is selected
for decimation next.

3.2 Boundary Tetrahedron: A tetrahedron one or more

of whose vertices lie on the boundary surface. All the
tetrahedra that are non-boundary shall be called interior
tetrahedra hereafter in this paper.

3.3 Boundary Face: Triangle face of a boundary

 tetrahedron all three of whose vertices lie on the boundary
surface.

3.4 Affected Tetrahedron: A tetrahedron, which shares exactly

one vertex with a prey tetrahedron. This shared vertex
stretches the affected tetrahedron towards, and onto the
barycenter of the prey tetrahedron as a result of TetFusion.

Figure 2: An illustration of the TetFuse operation. The (red)
center tetrahedron is the one to collapse onto its barycenter (prey
tetrahedron). The four other (blue) tetrahedra are the affected
ones, which stretch in the direction of the prey tetrahedron’s
barycenter. Note that for any affected tetrahedron, the vertex it
shares with the prey tetrahedron moves ‘away’ from the base
plane formed by its other three vertices (flipping discouraged).
Further, at least eleven tetrahedra collapse as a result of TetFusion
of an interior tetrahedron in a complete mesh. (High decimation
per step. Please see section 3.2).

3.5 Prey Vertex: The vertex of an affected tetrahedron that it

shares with a prey tetrahedron.

3.6 Base triangle: A triangle formed by the vertices of an

affected tetrahedron, excluding the prey vertex.

3.7 Deleted Tetrahedron: A tetrahedron, which shares two or

more vertices with a prey tetrahedron, which collapses as a
result of the collapse of the prey tetrahedron.

3.8 Base Normal: For an affected tetrahedron, its base normal is

the vector from center of its base triangle to its barycenter.

3.9 Normal Stretch Ratio (SN): The ratio of lengths of the base

normal of an affected tetrahedron before and after one
instance of TetFusion that affects it.

3.10 Stretch Factor (STRETCH_FACTOR): The maximum

allowed value for Normal Stretch Ratio (SN), at any instance
for an affected tetrahedron in the current representation of
the mesh.

3.11 MacroLoD: A level of representation of a tetrahedral mesh at
a macro level, where none of the affected tetrahedra has
suffered a Normal Stretch Ratio greater than
STRETCH_FACTOR in reference of its last macroLoD
representation.

3.2 TetFusion: Properties and Effects

We discuss the inherent properties and effects of TetFuse as a
decimation operation for tetrahedral meshes:

Symmetry: The operation is symmetric in the sense that upon each
instance of TetFuse, the volume of all the deleted tetrahedra is
distributed symmetrically amongst affected tetrahedra in the local
neighborhood.

Rigorous decimation: The operation performs a rigorous
decimation. Upon each instance of TetFuse, at least 11 tetrahedra
are collapsed for a non-boundary prey tetrahedron. This includes
the prey tetrahedron; at least 4 tetrahedra each sharing one of the
four faces with the prey tetrahedron; and at least 6 more tetrahedra
each sharing exactly one of the six edges with the prey tetrahedra.
This means a ‘higher’ lower bound on the decimation ratio per
step than an ‘edge collapse’ .

Avoids flipping: Because of symmetry of the decimation
operation, the vertex that an affected tetrahedron shares with the
prey tetrahedron (shared vertex) tends to move away from its base
plane (the plane formed by the other three vertices of the affected
tetrahedron. please see figure 2). Hence, most of the times the
ordering of vertices in an affected tetrahedron does not get
changed from its original configuration; and its volume is
represented correctly. However, in some cases, flipping is
possible. Such special cases, and a solution to deal with them are
discussed ahead in section 3.5.

Discourages self-intersections of the boundary: The operation
gives a spatial control of the level of detail of a mesh depending
upon the immediate neighborhood of a prey tetrahedron, and the
STRETCH_FACTOR. It has been verified that self-intersections
of boundaries occur only at sharp edges and corners [18], when an
affected tetrahedron pierces through one or more of the boundary
faces of a boundary tetrahedron. TetFusion gives control over this
case that is inherent to the selection of a prey tetrahedron by not
allowing any boundary tetrahedron to stretch as a result of
collapsing the prey tetrahedron.

Discourages element-boundary intersections at concave boundary
regions: Cases of element-boundary intersection occur when an
interior tetrahedron stretches through and over a concave
boundary region. Such cases cannot be avoided completely, but
can be reduced largely by checking the affected tetrahedra in the
mesh, i.e., by limiting the expansion of a tetrahedron (limiting the
maximum volume of any tetrahedron at any instant), and by not
allowing tetrahedra in the vicinity of the boundary surface to
stretch as a result of collapsing a prey tetrahedron.

Locks the aspect ratio: If the relative edge-aspect ratios of an
affected tetrahedron go beyond a pre-specified threshold value as
a result of the fusion of a prey tetrahedron, fusion is not allowed.

3.3 Error Metrics

The error tolerance metrics employed in our algorithm are
discussed in this section.

Preserving scalar values: We define a scalar tolerance measure,
∆Sci, for each vertex i of a tetrahedron T.

∆Sci = | Scalari – Scalarbarycenter | / | Scalarrange |

where Scalarrange = Scalarmaximum - Scalarminimum for
whole scalar domain in the original mesh.

If for each vertex i of a tetrahedron

∆Sci < SCALAR_TOLERANCE,

the tetrahedron is labeled ‘scalar_FusionAllowed’.

Error-binding the stretch of affected tetrahedra: We limit the
stretch of affected tetrahedra as a result of TetFusion of a prey
tetrahedron. We use a pre-specified STRETCH_FACTOR as an
upper bound on stretching of the base normal of affected
tetrahedra. As is evident, for each non-boundary affected
tetrahedron, exactly three edges get stretched towards the
barycenter of the prey tetrahedron. We use the already defined
Normal Stretch Ratio, SN, for an affected tetrahedron to see if the
associated prey tetrahedron can be fused:

For all the affected tetrahedra Ta associated with a prey
tetrahedron Tp:

If SN (Ta) < STRETCH_ FACTOR

Tp is labeled ‘stretch_FusionAllowed’.

3.4 Boundary Preservation

The current version of TetFusion does not affect (stretch) any of
the boundary tetrahedra Tb. This is accomplished in the following
manner:

- No boundary tetrahedron Tb is selected as a prey
tetrahedron for TetFusion.

- No interior tetrahedron Ti that affects a boundary
tetrahedron is selected as a prey tetrahedron for
TetFusion. A tetrahedron Ti that is an interior
tetrahedron and does not affect (stretch) any boundary
tetrahedron (Tb) is labeled ‘boundary_FusionAllowed’ .

 Thus, the current version of TetFusion preserves the geometry
and topology of the boundary surface perfectly. We believe that
an additional simplification pass in the current algorithm to
simplify the boundary tetrahedra, while preserving the topology
and the sharp features, based upon one of the efficient polygonal
mesh simplification methods [5, 8, 15, 16, 18, 20, 21] would
further improve the reduction ratios. We plan to extend this work
as a future step.

3.5 Flipping: Special Cases

There might still be cases of flipping, which for the case of
TetFusion would occur only in one way: when the shared vertex
of affected tetrahedron moves below the base plane formed by the
other three vertices (please see Figure 3). We propose an early-
rejection test to avoid such flipping cases. The test is simple:

 Given a prey tetrahedron Tp. For each affected tetrahedron Ta
that shares exactly one vertex Vs with Tp. If Vs moves to the other
side of the base plane PT upon one instance of TetFusion of Tp ,
the collapse of Tp is not allowed.

 If, however, Vs remains on the same side of the base plane PT
upon collapse of Tp, Tp is labeled ‘ flipping_FusionAllowed’.

Figure 3: An illustration of a case of flipping because of
TetFusion. The right (red) tetrahedron is the one to collapse onto
its barycenter (prey tetrahedron). The left one (blue) is the
affected one. As a result of collapse, Vs moves to the other side of
the base plane PTa. Such cases are expected to be rare because of
symmetric re-distribution of space amongst affected tetrahedra
because of TetFusion. As a result, no two tetrahedra of
asymmetric volume distribution can be vertex-adjacent as they are
shown in the figure, unless they are present in the original mesh.
For symmetrically vertex-adjacent tetrahedra that form a star
pattern onto the shared vertex (Figure 2), the shared vertex always
tends to remain on the same side of its respective base planes in
reference of each of the affected tetrahedra.

3.6 A Locally Greedy Algorithm

We present TetFusion as a locally greedy algorithm that makes
incremental passes over the whole mesh, examining each
tetrahedron in turn for fusion under allowable error tolerance. An
outline of the algorithm is as follows:

 Select starting values for control parameters, namely
SCALAR_TOLERANCE, STRETCH_ FACTOR, etc. (These
starting values of the control parameters determine the resolution
of the first macroLoD of the mesh.)

 Next, for current values of SCALAR_TOLERANCE and
STRETCH_ FACTOR:

(1) Label all tetrahedra as non-affected. Start
 from the first tetrahedron in the
 mesh:

(2) Look for the first interior and non-affected
tetrahedron, which can be labeled

 scalar_FusionAllowed
 AND
 stretch_FusionAllowed
 AND
 boundary_FusionAllowed
 AND
 flipping_FusionAllowed

(3) If found:
 (3.1) Label it as a prey tetrahedron

(3.2) Apply TetFuse
(3.3) Label all affected tetrahedra

(4) Start from prey tetrahedron. Repeat steps
 (2)-(3) until no more fusions allowed.

(5) Increment the macroLoD counter of the output
 mesh by one.

 Upon completion of one pass of this algorithm, the output will
be a macroLoD where no tetrahedron will have an average stretch
factor greater than the current STRETCH_ FACTOR, for a given
value of SCALAR_TOLERANCE. To obtain multiple
macroLoDs, multiple passes of the algorithm can be run
incrementally over the last macroLoD obtained, until no more
fusions are allowed.

3.7 Dynamic tests

It is important to note that using our approach, cases of element-
boundary intersections cannot be avoided completely, especially
when high decimation ratios are required. Thus, elegant
intersection tests avoiding such cases [3, 18] can be employed,
which might increase the time-complexity of the algorithm.
However, because of the rigorous simplification approach
employed in TetFusion (higher reduction ratio per step), the upper
bound on time-performance is still expected to be lower than that
of the other ‘edge collapse’ -based methods.

Figure 4: A view of two macroLoDs of the 1,499,160 elements
blunt-finn dataset. Left: the original mesh, in wire-frame, right:
61.16% reduced, as smooth shaded tetrahedra. Both boundary and
scalar attributes preserved.

4 RESULTS

Table 1 summarizes the results obtained from sample runs of the
algorithm on a number of datasets. All the execution times are for
an SGI R10000 194MHz with 2048 MB RAM, running Irix 6x.

5 CONCLUSION AND FUTURE WORK

We presented a framework for rapid progressive simplification of
tetrahedral meshes. The atomic decimation operation employed
(TetFuse) is symmetric, and better suited for 3D volumetric
meshes than ‘edge collapse’ -based methods. We described how a
combination of a few control parameters can provide a smooth
and controlled transition through various LoDs of a mesh at a
macro level (macroLoDs), and discussed how symmetric re-
distribution of space and control parameters discourage the cases
of self-intersection of boundaries, element-boundary intersections,
and negative volume tetrahedra. Additional compression could
still be achieved by decimation of external faces of the boundary
tetrahedra using ‘edge collapse’ -based methods [1, 5, 8, 9, 10, 15,
16, 17, 22], or by concise representations of the boundary surfaces
[7, 9]. For further offline compression of the datasets, schemes
like the ones suggested by Gumhold et al. [6], Pajarola et al. [13],
or Szymczak et al. [19] present a nice platform for integration
with TetFusion.

 At an application level, this framework can be employed in
rapid creation of macroLoDs for large time-varying datasets, e.g.,
earthquake simulation. One such dataset, with over 69 million
tetrahedra, has characteristic localized scalar and vector attributes
per time-step [2, 11, 12]. (The region of interest (ROI) varies per
time-step.) Because of the inherent spatial control of decimation,
TetFusion can be used to rapidly create macroLoDs with rigorous
decimation in regions outside the ROI. These macroLoDs (one per
time-step) with high decimation ratios can be suitable for
interactive temporal visualization. (The human visual system is
understood to be less sensitive to details in a dynamic scene, with
moving objects, than in a scene with static objects.) A
considerable frame refresh rate (10-13 frames per second) can
thus provide sufficient detail to visualize the temporal behavior of
such a model. In future work, we plan to employ better error-

evaluation techniques [3, 21], and explore the trade-off between
time complexity of TetFusion and the accuracy of domain and
field errors introduced as a result of tetrahedral fusion.

Figure 5: Volume rendered images of two macroLoDs of the
827,904 elements spx dataset. Left: the original mesh, right:
69.88% reduced. Both boundary and scalar attributes were
preserved. Note that the images are visually indistinguishable.

Acknowledgements

We wish to thank Peter Williams, Lawrence Livermore National
Laboratory for spx dataset; and Ricardo Farias, Mississippi State
University, for providing tetrahedral mesh subdivision code. This
work has been developed in part under National Science
Foundation award grant no. 6066047–0121989 for the SPUR
(Seismic Performance for Urban Regions) project [2, 11, 12].
SPUR Contributors: Gregory L. Fenves, Bozidar Stojadinovic
(UC Berkeley), Jacobo Bielak et al. (Carnegie Mellon University),
Tomasz Haupt, Joerg Meyer, Purushotham Bangalore, Michael L.
Stokes (Mississippi State University).

Figure 6: Another ‘ cut open’ view of four macroLoDs (defined in section 3.1) of the 103,488 elements tetrahedral mesh of the spx dataset,
created in 14.31 seconds on an SGI R10000 194MHz with 2048 MB RAM. (a) The original mesh (b) 43.19% reduced (c) 62.32% reduced
(d) 75.5% reduced. Only a portion of the dataset is rendered to show the interior elements. (Dataset courtesy: Peter Williams, Lawrence
Livermoore National Laboratory).

S.

No.
Number of tetrahedra

(% of boundary nodes)
Boundary
Preserved

Scalar attribute preserved
(SCALAR_TOLERANCE)

STRETCH_FACTOR % Reduction
(Tetrahedra)

CPU
 User Time (Sec.)

1. 12,936
(6.86%)

YES YES
(0.025)

5.0 41.14% 0.51

2. 78,600
(32.92%)

YES NO 5.0 50.81% 8.0

3. 100,000
(9.3%)

YES NO 5.0 50.77% 15.0

4. 103,488
(14.79%)

YES NO

5.5 78.48% 7.26

5. 103,488
(14.79%)

YES YES
(0.025)

5.5 62.69% 5.85

6. 187,395
(16.5%)

YES

YES
(0.025)

5.0 49.39% 15.48

7. 300,000
(9.3%)

YES NO 5.0 70.39% 47.0

8. 827,904
(13.26%)

YES YES
(0.05)

5.5 83.44% 58.41

9. 827,904
(0%)

NO NO 5.5 98.93% 91.32

10. 1,005,675
(9.8%)

YES YES
 (0.05)

6.0 42.39% 85.47

11. 1,499,160
(9.79%)

YES YES
(0.5)

5.0 63.79% 187.23

Table 1: Summary of results from an implementation of TetFusion run on a number of datasets. All the macroLoDs have been created on
an SGI R10000 194MHz with 2048 MB RAM. Dataset nos. 2, 3, and 7 are subsets of a 69,448,288 elements earthquake simulation model
[2, 11, 12]. Spx: dataset nos. 1, 4, 5, 8 and 9 (courtesy Peter Williams, Lawrence Livermoore National Laboratory; and Ricardo Farias,
Mississippi State University). Delta-wing: dataset no. 10 (courtesy NASA Ames Research Center). Blunt finn: dataset nos. 6 and 11.

 (a) The original mesh (b) 44.7 % reduced (c) 57.9% reduced
Figure 7: Three macroLoDs of the 1,499,160 elements blunt-finn dataset. The rows show progressive simplification as a result of
TetFusion. Each column represents one macroLoD of the mesh. Row 1: A cutting plane slicing through the dataset, displaying the
primitives of intersection as wireframe. Row 2: Cutting plane displaying the primitives of intersection as filled polygons. Row 3: Volume
rendered images of the three macroLoDs of the dataset.

References

[1] Alliez, Pierre, and Mathieu Desbrun. Progressive

Compression For Lossless Transmission Of Triangle
Meshes. In Proceedings of SIGGRAPH’01 (Los Angeles,
California, August 2001), Computer Graphics Proceedings,
Annual Conference Series, pages 198-205. ACM
SIGGRAPH, ACM Press. August 2001.

[2] Chopra, P., J. Meyer, and Michael L. Stokes. Immersive

Visualization Of A Very Large Scale Seismic Model. In
Sketches and Applications of SIGGRAPH’01 (Los Angeles,
California, August 2001), page 107. ACM SIGGRAPH,
ACM Press. August 2001.

[3] Cignoni, P., D. Costanza, C. Montani, C. Rocchini, and R.

Scopigno. Simplification Of Tetrahedral Meshes With
Accurate Error Evaluation. In Thomas Ertl, Bernd Hamann,
and Amitabh Varshney, editors, Proceedings of IEEE
Visualization’00 (Salt Lake City, Utah, October 2000), pages
85-92. IEEE Computer Society. 2000.

[4] Garland, M. Multi-resolution modeling: Survey & Future

Opportunities. In EUROGRAPHICS’99, State of the Art
Report (STAR) (Aire-la-Ville, CH, 1999), pages 111-131.
Eurographics Association. 1999.

[5] Garland, M., and P. Heckbert. Surface Simplification Using

Quadric Error Metrics. In Proceedings of SIGGRAPH’97,
pages 115-122. ACM SIGGRAPH, ACM Press. 1997.

[6] Gumhold, Stefan, Stefan Guthe, and Wolfgang Straβer.

Tetrahedral Mesh Compression With The Cut-Border
Machine. In Proceedings of IEEE Visualization’99 (San
Francisco, California, October 1999), pages 51-59. IEEE
Computer Society Technical Committee on Computer
Graphics, IEEE Computer Society. 1999.

[7] Guskov, I., Kiril Vidimce, Wim Sweldens, and Peter

Schroder. Normal Meshes. In Proceedings of
SIGGRAPH’00 (New Orleans, Louisiana, July 2000), pages
95-102. ACM SIGGRAPH, ACM Press. July 2000.

[8] Hoppe, Hugues. Progressive Meshes. In Proceedings of

SIGGRAPH’96 (New Orleans, Louisiana, August 1996),
pages 99-108. ACM SIGGRAPH, ACM Press. August 1996.

[9] Isenburg, Martin, and Jack Snoeyink. Face Fixer:

Compressing Polygon Meshes With Properties. In
Proceedings of SIGGRAPH’00 (New Orleans, Louisiana,
July 23-28, 2000), pages 263-270. ACM SIGGRAPH, ACM
Press. 2000.

[10] Kalvin, Alan D., and Russell H. Taylor. Superfaces:

Polygonal mesh simplification with bounded error. In IEEE
Computer Graphics and Applications 16 (3), pages 64-77.
1996.

[11] Meyer, J., and Prashant Chopra. Building Shaker:

Earthquake Simulation In A CAVETM. Work in progress,

IEEE Visualization’01 (San Diego, California, October
2001), Abstract, page 3. 2001.

[12] Meyer, J., and Prashant Chopra. Strategies For Rendering

Large-Scale Tetrahedral Meshes For Earthquake Simulation.
SIAM/GD’01 (Sacramento, CA, November 2001), Abstract,
page 30. 2001.

[13] Pajarola Renato, Jarek Rossignac, and Andrez Szymczak.

Implant Sprays: Compression Of Progressive Tetrahedral
Mesh Connectivity. In Proceedings of IEEE Visualization’99
(San Francisco, California, October 1999), pages 299-305.
IEEE Computer Society Technical Committee on Computer
Graphics, IEEE Computer Society. 1999.

[14] Popovic, J., and Hoppe, H. Progressive Simplicial

Complexes. In Proceedings of SIGGRAPH’97, pages 217-
224. ACM SIGGRAPH, ACM Press. 1997.

[15] Renze, K. J., and J. H. Oliver. Generalized Unstructured

Decimation. IEEE Computer Graphics and Applications 16
(6), pages 24-32. 1996.

[16] Schroeder, William J., Jonathan A. Zarge, and William E

Lorensen. Decimation Of Triangle Meshes. Computer
Graphics 26(2), pages 65-70. 1992.

[17] Schroeder, William J. A Topology Modifying Progressive

Decimation Algorithm. In Proceedings of IEEE Visualization
’97, pages 205-212. 1997.

[18] Staadt, O. G., and M. H. Gross. Progressive

Tetrahedralizations. In Proceedings of IEEE Visualization
’98 (October 1998), pages 397-402. 1998.

[19] Szymczak, Andrzej, and Jarek Rossignac. Grow fold:

Compression Of Tetrahedral Meshes. In Proceedings of the
fifth symposium on solid modeling and applications (Ann
Arbor, Michigan, June 1999), pages 54-64. ACM, ACM
Press. 1999.

[20] Trotts, Isaac J., Bernd Hamann, and Kenneth I. Joy.

Simplification Of Tetrahedral Meshes. In Proceedings of
Visualization 98 (October 1998), pages 287-296. 1998.

[21] Trotts, Isaac J., Bernd Hamann, and Kenneth I. Joy.

Simplification Of Tetrahedral Meshes With Error Bounds.
IEEE Transactions on Visualization and Computer Graphics
5 (3), pages 224- 237. 1999.

[22] Turk, Greg. Re-tiling Polygonal Surfaces. Computer

Graphics, 26(2), pages 55-64. 1992.

