
ALIGNING LARGE-SCALE MEDICAL AND BIOLOGICAL DATA SETS:
EXPLORING A MONKEY BRAIN

DMITRY SHULGA, JOERG MEYER
Mississippi State University

NSF Engineering Research Center, 2 Research Blvd., Starkvill e, MS 39759, USA
schultz@gyral.com, jmeyer@erc.msstate.edu

ABSTRACT

This project addresses the issue of developing interactive
rendering methods for datasets which cannot be stored on
a single hard drive or in main memory anymore. Our
dataset is a set of 1400 slices (single cross-sections) of a
monkey brain, which has been sli ced more than 15 years
ago at the Center for Neuroscience at UC Davis, and
recently has been scanned at a very high resolution (more
than 10MB per image in compressed format). The
enormous resolution allows us to zoom from a global
view down to the cell level, all in one image. This
exciting range of rendering options requires scalable,
multiresolution rendering techniques. The challenges we
encounter with this data set is an extreme misalignment of
the sli ces due to manual placement onto glass object
carriers and manual insertion in the film scanner. We
present a semi-automated method which compensates for
most of these artifacts and identifies those sli ces that
cannot be handled and aligned automaticall y. The
algorithm reduces the number of sli ces that need to be
treated manually enormously.

KEYWORDS

Registration, alignment, 3-D reconstruction, large-scale
visualization.

1 INTRODUCTION
Large-scale biomedical data sets, such as CT, MRI or
PET scans, cryo-sections, confocal laser-scanning
microscopy, and other automated imaging techniques,
provide series of 2-D cross-sections, which are usually
perfectly aligned. If the sli cing is done manually, serious
misalignment might be encountered, which prohibits a
good 3-D reconstruction of such data sets. However, the
quality and the resolution of those data sets makes it
desirable to use those sli ced brains, which have been cut
and preserved more than a decade ago, instead of sli cing
new ones.

Sets of more than 1400 slices (single cross-sections)
of a Rhesus monkey brain, which have been sli ced at the
Center for Neuroscience at UC Davis, and have now been
scanned at a very high resolution using a 35mm film
scanner, are now available. They have been scanned in
order to archive them electronicall y and to preserve them

for future studies. Each slice comprises of more than
10MB of image data in compressed JPEG format. Our test
dataset reveals detailed information about the structure of
the brain down to the cell l evel (Figure 1).

Figure 1: Cell level of a brain (detail)

Interactive visualization of large-scale datasets requires
advanced techniques in image processing, hierarchical
data management, and data reduction. Our goal is the
development of interactive visualization techniques for
large-scale datasets based on hierarchical representations
and immersive visualization environments, such as the
Virtual Workbench (stereoscopic display device with
interaction facilities), or the CAVETM. We want to explore
these 3-D datasets in an intuiti ve way at high resolution
and at unrivaled precision. The main problem is the
alignment of the sli ces. This paper addresses some of the
challenges we encountered.

2 SCANNED IMAGE DATA
The sli ces have been scanned at a resolution of 3000dpi,
which corresponds to a distance of 0.08 µm between
pixels (Figure 2). This enormous amount of detail makes
it possible to zoom down to the cell l evel. A purple dye
has been used to mark the cell nuclei, which are now
visible as darker spots in the image (Figure 1).

Fortunately, two metal pins were pushed through the
brain before sli cing. These pin holes can now be used for
registration and for initial alignment. Since the three
pieces were glued on the plate separately, they need to be
registered separately. Advanced methods, such as contour
finding, morphing and warping, will be discussed later
[7,8]. First, we are going to focus on the registration
marks.

Figure 2: Rhesus monkey brain

3 IMPLEMENTATION

3.1 SCALING
The average size of the sli ces is 4500x3000 pixels. In
order to find the registration marks (pin holes), we do not
need the full resolution. We can speed up the algorithm by
reducing the size of a single sli ce by a factor of eight in
each dimension. This gives us an image which can be
displayed on a regular computer screen. Thus, it is
necessary to decimate the data set by interpolating a set of
points and replacing them by a suitable representative.
This way, features can be preserved which might
otherwise get lost. Basicall y, we are averaging over a
square region to interpolate the data in two directions
(Figure 3).

� � � � � � � � � � � 	

Figure 3: Scaling procedure

The main goals of the scaling algorithm are competitive.
There is a trade-off between performance and precision of
detection of the pin hole location in the full -scale image.
To meet the first goal is fairly easy. The main problem
that causes latency is I/O. Therefore we try to avoid all

intermediate functional layers for accessing the files and
make direct use of standard C++ classes li ke fstream
and iostream. They offer unrivaled performance and
immediate access to a block record on the hard drive.

The main steps of this part of the algorithm are the
following:

1. Open file as ifstream:
ifstream f(file_name)

2. Buffer it with istream:
3. Read data block (block height is the number of

rows to interpolate):
f.read(buf, size);

4. Interpolate colors;
5. Save to output file:

of.write(obuf, osize);
6. Continue with next block.

The second goal is to create a reasonable, down-scaled
representation of a sli ce. Basicall y, we use averaging of
colors of adjacent pixels (Figure 3). In most cases it is
sufficient to consider gray levels only rather than actual
colors. The number of points in a row or column for
averaging is the square of the reduction factor.

3.2 ALIGNING
In order to create a high-quality 3-D model of the Rhesus
monkey brain, the individual parts need to be aligned. A
first cue is given by the position of the registration marks.
This section describes how to identify those marks within
a larger image.

The algorithm implements the following steps:

• Find Bounding Box – determine the rectangular area
where the data set is actually located within a
particular slice;

• Find Mark Center – determine the center of a given
registration mark;

• Locate Marks - determine if there is a registration
mark within a limited range.

3.3 IDENTIFYING A BOUNDING BOX
Since all slices are in a slightly different position on the
glass plate and in the scanner area, it is necessary to find
the object within a scanned image. The first step to realign
the sli ces is to find a bounding box, i.e., a rectangular area
defining the boundaries of the object (Figure 4).

The main principle of determining the edges of a
bounding box is to search the image from all four sides
until a significant change in the color value is
encountered. We use a general, differential approach,
which detects both transitions from positi ve to negative
and from negative to positi ve.

Figure 4: Bounding box

Mathematicall y, this corresponds to the derivative of the
color value function:

12

12

xx

ii

dx

di

−
−=

Since we have a discrete coordinate system and unit
coordinates, we can write it as:

12 ii
dx

di −=

Scanning is similar for all sides (with different search
directions). Let us consider some techniques that helped
us to develop the final version of the algorithm. It should
be mentioned that this method works both for images with
light background (given example), and also for images
which typicall y have a dark background (CT or MRI
scans).

A brute-force method would be to compare
neighboring pixel colors. If the difference is significant,
we can assume that an edge has been found. This would
work fairly well on images with high contrast, low noise,
and well -defined contours. All three criteria are not met
by our particular data set. The pixel search algorithm
would terminate too early and probably falsely detect
some noise and accept it as the start pixel for an object
within a slice.

So the next step we need to do is to eliminate the
influence of noise pixels. This can be done by blurring a
picture in the direction of the search algorithm. There is a
slight difference between finding a bottom or top edge
and finding a left or right edge. In the first case, pixels
must be blurred in horizontal direction (Figure 5),
whereas for the second case, pixels must be blurred in
vertical direction (Figure 6).

We learned that blurring helps to smooth out noise
pixels very efficiently, so that we can apply our
differential pixel search method to identify the object
boundaries.

The following section describes the blurring
algorithm. The method is similar to motion blurring. First,
the number n of points which are supposed to be
averaged, and two buffers, one for the original image
(obuf) and one for the blurred image (bbuf), must be

introduced. Every row or column is blurred in the same
manner.

Figure 5: Horizontal blurring

Figure 6: Vertical blurring

The algorithm accumulates the first n color values and
stores them in ai. For each i > n, the following operations
are performed (note that the array index begins at 0):

1. Let n = number of points to be averaged.
2. Average pixel values and store the value in a bbuf

buffer cell :)(aiavgbbuf ni =− .

3. Subtract value (i-n) of original buffer obuf from

accumulator ai: niobufaiai −−= .

4. If end of line is not reached (i < m, where m is the
line length), then add value i of original buffer obuf

to accumulator ai: iobufaiai += .

5. Otherwise, decrement n.
6. If n = 0, go to the next line; otherwise repeat from

step 2.

The algorithm above blurs images quite efficiently. The
question that remains is: What do we consider a
significant change in color values? Generally, this
difference may be expressed in absolute color values or in
a percentage ratio. Measuring absolute values can be
problematic as the range of color values varies on
different pictures. The same holds for percentage values,
because the deviation from the average value also varies
in a wide range. The solution is to normalize the
histogram and find minimum and maximum color values,
and then use a fixed threshold.

Again we need to search the entire picture, and, for
similar reasons, blur the image while searching to avoid

running into local minima or maxima. Figure 7 shows
how a picture with a black spot considerably changes after
blurring. Instead of detecting a single dot as an a
extremum or a boundary condition, the spot almost
disappears in the blurred image. This effect is desired.
Only objects of a reasonable minimum size are taken into
account for the boundary search.

Figure 7: Dark spot (artifact) before and after vertical blurring
(slice no. 504/1400)

After finding the extreme color values, the interpolation
of the current color value is straightforward. Basically, the
lowest possible value is 0%, whereas the highest is 100%
(Figure 8). The actual values must be mapped to this
scale. � � �

� �

� � � � � � ! � � " # ! $ % # $ & ! % '()) *

) *
+ , - . / 0 1 1 2 3 4 5 6 7 8 2 5 3 4 2 3 9 5 4 :; < =

Figure 8: Color value interpolation

The combination of image normalization and filtering of
local extrema allows us now to search for the boundaries
of the bounding box. But here we encounter another
problem. What if the color values between adjacent pixels
change only gradually? Then our threshold method would
never apply, even if there are large overall variations of
color values. The following example will i llustrate this
problem.

The first attempt was to check if the difference d
between two adjacent pixels was greater than a certain
threshold:

iii iid −= −1

Even if this approach looks very straightforward, it does
not work. The reason is that either the original data set or
the blurred image exposes only gradual changes in color
values when compared to local neighbors (Figure 9).

> ? @ A B CD E F

Figure 9: Color value gradient

As can be seen, there is no significant change between
adjacent pixel colors with respect to the total color value
range. Thus, all these cases will be ignored, while in

realit y this sequence of pixels might represent the object
boundary.

This observation calls for an improved method. At
first sight, it might seem to be sufficient to compare not
direct neighbors, but pixels within a certain distance, e.g.,
for pixel 1 it would be the 3rd, the 4th, and so on.
Unfortunately, it does not work either, as in real data the
difference between such pixels can be very small. So even
comparing pixels within a certain distance would not give
a correct result (Figure 10).

G H I J K LM N F

Figure 10: Real gradient

However, a careful observation shows that despite the
small difference between the 1st and the 9th pixel, there is
a trend towards darker pixels throughout the sequence.
Thus, to determine an edge of an object, an accumulated
difference can be used (Figure 11).

G H I J K LM N F
O P Q Q R SR S S

Figure 11: Accumulated difference

The main search algorithm works in the following order:

1. Starting from the second pixel in each line, check if
there is any difference in the color values of the n-th
and (n-1)-th pixels:

1−−= nnn iidi > threshold ?
2. If yes, then check the sign of the difference; if the sign

is the same as previous, add color value to
accumulator; otherwise increment n, reset switches,
and return to step 1:

î

=+
≠

=
−

−

).()(,

);()(,0

1

1

nnn

nn

disigndisigniai

disigndisign
ai

3. Check if accumulated color value is bigger than
allowed deviations; if yes, then an edge is found;
otherwise if the number of accumulations equals the
maximum accumulation depth then increment n, reset
switches, and return to step 1 (see 2).

4. Increment n; if the end of the line is reached, go to the
next line.

Finally, it should be mentioned that finding the vertical
bounding box edges of the object differs from finding the
horizontal ones by the fact that it is not necessary to use
the despeckle filter on the whole picture again; it is
sufficient to blur the current line that is under processing.
The first pass (minimum and maximum search with filter)
can actually be used for one direction of the bounding
edge finder. For the other direction, the orientation of the
filter is perpendicular. There is no need to search for
minimum and maximum color values for both

orientations, as in practice the limits found from the
horizontally blurred image are not considerably different
from the ones found in the verticall y blurred image. For
large images this fact noticeably increases performance.

3.4 FINDING THE CENTER OF A
REGISTRATION MARK

As mentioned earlier, the data set features two registration
pin holes, which can be used to align the sli ces.
Unfortunately, each sli ce consist of several pieces that
have been positioned manually. Therefore the distance
and orientation among the pieces varies from sli ce to
sli ce. Two registration holes in two separate pieces are not
sufficient to register the entire data set. However, they
provide a good starting point. These two points wil l
become the fix points (Pivot points) for the registration.
Other features, such as contour polygons, must be taken
into account in order to do a proper alignment. Pattern
matching algorithms, which can be used to identify
similar sets of contour points in two adjacent slices or
even across several slices have been developed before [9].
This paper focuses on the Pivot points and describes a
method to localize those points by making use of spatial
coherence and similarity. Image similarity is only given if
the object is located in the same range or window. This is
guaranteed by the bounding box method described in the
previous section.

The algorithm starts from a sli ce somewhere near the
center where both registration marks are present. The user
then selects the two pin holes with the mouse. This step is
not automated, because the data set exposes many similar
features, which could be mistaken for pin holes. It is not
very time-consuming for the user to select those two
points, but we want to avoid that the user needs to go
through all 1400 slices to select those points. The
algorithm does this automaticall y by searching a small
neigborhood of the selected pin hole in one of the
adjacent sli ces. The algorithm searches in both directions
until i t reaches the last sli ce on each side.

The search method is based on a polygon flood fill
algorithm with 8-neighborhood adjacency [2]. We
suppose that a spot is a convex discrete polygon. The
algorithm fill s the entire area of the pin hole with the
same color as the pixel that was selected and counts how
many pixels were fill ed.

 Figure 12: Concave hole

It returns the barycenter of those fill ed pixel locations,
which corresponds to the center of the pin hole (provided

it was convex, which we can safely assume). In case of a
concave hole, the barycenter may be located outside the
actual spot (Figure 12). Obviously, it is very difficult for
the user to put the seed point exactly in the center of the
pin hole. That is why this algorithm is very useful for
identifying this point (Figure 13).

 Figure 13: Registration mark (user-marked, close-up)

The flood fill algorithm can be easil y implemented as a
recursive function:

1. Start from seed point.
2. If current pixel is of the same or similar color as the

starting point, then fil l it; otherwise go to step 5.
3. Increment the number of processed pixels and add

coordinates to accumulators.
4. For each of the 8 neighbor pixels, recursively call this

procedure.
5. Return barycenter (averaged coordinates, sum of

accumulated coordinates divided by number of
processed points).

3.5 LOCATING REGISTRATION MARKS
IN ADJACENT SLICES

After finding the center of a given registration mark, it is
possible to use these coordinates to locate the same mark
on another sli ce. The search method is based on several
aspects. First, the color of a pixel should match the color
of the Pivot point in the previous sli ce. Second, the size,
i.e., the number of pixels within the pin hole, should
roughly match.

Basicall y, finding a corresponding mark in an
adjacent sli ce works pretty much the same as finding the
center of the pin hole in the reference image:

1. Start from the Pivot point.
2. If the color of a pixel roughly matches the color of

the mark in the previous sli ce, then go to step 3, else
go to step 4.

3. If size of the mark roughly matches the size of the
mark in the previous sli ce, then goto step 5, else goto
step 4.

4. For each of the 8 neighbor pixels, recursively call this
procedure.

5. Call previous algorithm (section 3.4) to determine
center.

4 RESULTS

The methods described in the previous sections have been
applied to a large volumetric data set of a Rhesus monkey
brain, which consists of 1400 slices, each about 4500 x
3000 pixels (size varies slightly). The total size of the data
set is about 76 GB. We were looking for automated
alignment methods to reduce the number of sli ces that
need to be loaded into an editor and manipulated by hand.
The algorithm creates a log file which stores the pixel
positions in world coordinates for each registration mark
in the slice. If no registration mark was found within a
certain search radius, the sli ce is rejected and marked for
manual handling. The bounding box method helped us to
avoid tedious cutting operations, and the pin hole method
provided us with the Pivot points for piece alignment. We
observed that the window size for the despeckle filter
makes a big difference on the quality and precision of the
bounding box. As the main goal of blurring is to reduce
inconsistencies in images, it is important to find an
optimum window size.

Overlapping while blurring also has a big impact. A
larger overlap gives a better smoothing effect but it also
creates a fuzzier gradient that may lead to failure in
finding the boundary edges. On the other hand, reducing
overlap sometimes causes features to be overlooked.
Figure 14 shows a case where averaging results in losing
edge information.

Figure 14: Non-overlapping blurring – original and average

5 CONCLUSIONS AND FUTURE WORK

We have discussed a flexible method for the detection of
registration marks in large-scale biomedical data sets.
This method wil l enable biologists and physicians to
make use of thousands of objects that have been sli ced in
the past and are now scheduled for electronic archiving in
order to preserve them for future generations before they
deteriorate. High-resolution scanning technology and
high-performance storage systems will make those scans
available to a much wider audience. In order to
understand the three-dimensional structure, it is desirable
to be able to reconstruct the original volume from the
sli ces. Our algorithm provides some robust techniques for
windowing, object detection, and registration of the
sli ces. Future work includes the addition of feature
detection algorithms, which will overcome problems such
as some uncertainty as how to match polygons with
different numbers of vertices, different lengths of edges,
etc. Some of these problems have been addressed in a
related paper [9].

Our algorithm is able to find registration marks in an
image series with high certainty. These marks wil l be the
fix points (Pivot points) of a morphing or warping
algorithm. Each object will be triangulated, and we can
use these points as a common point shared by all triangles
inside the object.

The current algorithm can be easil y extended to
detect other unique features, which are similar in adjacent
sli ces, even if they are only dominant in a local domain.
This will provide additional registration points, which will
lead to a better 3-D reconstruction.

ACKNOWLEDGMENTS

We thank Edward Jones, Fred Gorin and Jim Stone at the
Neuroscience Center (UC Davis) for providing the sample
data set. We also thank Bernd Hamann (CIPIC, UC
Davis) for valuable research opportunities. The project
was a joint effort between the NSF Engineering Research
Center at Mississippi State University, the Center for
Image Processing and Integrated Computing (CIPIC) and
the Neuroscience Center at UC Davis. This project was
funded in part by the National Partnership for Advanced
Computational Infrastructure (NPACI) under award no.
10195430 00120410.

REFERENCES

[1] Meyer, Joerg, 2000. LSV - Large Scale Visualization
http://www.cs.msstate.edu/~jmeyer/lsv.html.

[2] Foley, James D., Andries van Dam, Steven K. Feiner, and
John F. Hughes. 1996. Computer Graphics: principles and
practice. Glenview, IL, Addison-Wesley Publishing
Company Inc.

[3] OpenGL Architecture Review Board, Mason Woo, Jackie
Neider, Tom Davis, and Dave Shreiner. 2000. OpenGL
Programming Guide: the official guide to learning
OpenGL , version 1.2. Glenview, IL, Addison-Wesley
Publishing Company Inc.

[4] OpenGL Architecture Review Board, Dave Shreiner, eds.
2001. OpenGL Reference Manual: the official reference
document to OpenGL, version 1.2. Glenview, IL, Addison-
Wesley Publishing Company Inc.

[5] Bailey, M., “ Interacting with Direct Volume Rendering” ,
IEEE Computer Graphics and Appli cations, Vol. 21, Issue
1, pp. 10-12, February 2001.

[6] Stroustrup, Bjarne. 1997. The C++ Programming
Language. Glenview, IL, Addison-Wesley Publi shing
Company Inc.

[7] Tan, C.L., and S. K. K. Loh, Eff icient Edge Detection
Using Hierarchical Structures, Pattern Recognition, Vol.
26, No. 1, pp. 127-135, 1993.

[8] Schiemann, T., M. Bomans, U. Tiede, K. H. Höhne,
Interactive 3D-Segmentation Visuali zation in Biomedical
Computing, Vol. 1808, pp. 376-383, 1992.

[9] Fries, Karsten, Jörg Meyer, Hans Hagen, and Bernd
Lindemann, “Analysis of Biomedical Image
Corrrespondence: Matching 3-Dimensional Point Sets,”
Proc. of Scientific Visualization 2000, Schloß Dagstuhl,
Germany, May 22 - 26, 2000.

