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ABSTRACT
Enhanced biomedical image scanning technology and
growing network accessibility have created a need for
faster and more efficient data exchange over the Internet 
and in closed networks. Researchers and biologists are 
conducting experiments on large biomedical data sets and 
want to share information with other scientists to progress 
in their research. But the information they are dealing 
with are large-scale data sets that occupy gigabytes of 
space, which makes the storing of these data sets onto 
one’s local hard drive very difficult. The size of these data 
sets also makes them difficult to transmit over currently 
existing network links. To overcome these difficulties, 
those data sets are stored in large-scale data repositories,
from which they can be retrieved upon user’s request. The 
challenge is to make the data accessible within a
reasonable amount of time at a reasonable quality without 
losing detail or image resolution. We describe a
hierarchical storage scheme based on 3-D Haar wavelets, 
and a fast 3-D rendering algorithm based on 2-D texture 
mapping, which has been integrated with the Scalable
Visualization Toolkits, an alpha project of the National 
Partnership for Advanced Computational Infrastructure
(NPACI).
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1. INTRODUCTION

Recent improvements in CT and MRI scanning
technology provide high-resolution imagery of the human 
body, which needs to be distributed over networks and 
rendered in real time. The data sets, which are created by 
these scanning devices, are too large to fit in core memory 
of current systems. Quadrupling the resolution in each 
dimension (e.g., from 256 to 1024) increases the size of 
the volume by a factor of 43 = 64. The size of these data 
sets ranges from several hundreds of megabytes to about 
one hundred gigabytes. 
San Diego Supercomputer Center (SDSC) maintains a
large data repository (High Performance Storage System, 
HPSS) to store those kinds of data sets. These data sets 
are made accessible through our web-based Java interface 
to closed user groups and to researchers all over the 
world.

     The Scalable Visualization Toolkits developed at
SDSC support a variety of different file formats to store 
multi-dimensional, multi-modal, time -varying data sets in 
the data repository. For volumetric data sets, a file format 
named vol has been implemented, which supports regular 
3-D grids. A vol file can be encoded in three different 
formats, namely vols, volb and volc. If the data set
contains scalar values, it is written as a vols format. This 
format stores data as 8bit scalar values. The volb file 
format has been implemented to store RGB and RGBA 
(RGB-alpha, 32 bits). If no alpha value is present, the 
respective component is set to zero. The volc file format 
stores data as 64 bit RGB-alpha-beta values. The color 
component values are truncated to 10 bits for red, 12 bits 
for green, and 10 bits for blue. The alpha and beta
components are truncated to a short each. The vol file 
format also supports chunked file format layouts in which 
data is arranged in chunks, which supports sub-volumes
to be extracted. A chunked storage layout makes it easier 
to access groups of voxels within a user-defined region of 
interest. Our goal is to extract sub-volumes at different 
levels of detail and to transmit them from the server (data 
repository and Scalable Visualization Toolkit) to the
rendering client (Java applet). NPACI’s Scalable
Visualization Toolkits are designed to handle SDSC’s vol
file formats. They can handle large-scale data sets that do 
not fit into a desktop machine or workstation’s memory 
and usually cannot be rendered entirely in real time 
without reducing the complexity. The internal access
strategies are transparent to the user. The Toolkit uses 
caching schemes and chunked storage layouts to improve 
performance.

     When the data sets are transmitted over the network 
they are transformed into a smaller representation, which 
can be transmitted at higher speeds. We use the wavelet
transformation to transform the data sets. A wavelet 
transformation converts data from the spatial domain into 
a localized frequency domain [1]. Each cycle is associated 
with a particular scale. The Haar wavelet is one of the
simplest wavelet transforms  and can be used to create
different levels of detail. We have implemented the Haar 
wavelet transformation in 3-D to explore the spatial
coherence between scalar values in the grid nodes in all 
three dimensions. This results in better compression rates 
on the server side and faster data transmission for volume 
rendering [2, 3] on the client side.



     The wavelet representation is uncompressed and
decoded for a given level of detail on the client side. Once 
the original information is reconstructed, it is rendered as 
a 3-D volume using Java3D. The following sections will 
describe the 3-D Haar wavelet method and the Java3D 
rendering algorithm in greater detail. Examples are
provided to encourage the reader to reimplement this
method and compare the performance of our Java-based
implementation to other platforms. NPACI’s Scalable
Visualization Toolkits are also available in C/C++, which 
might make this step easier.

2. BACKGROUND

Hierarchical volume rendering of biomedical data sets is 
important to study user-defined regions of interest in
greater detail, while the rest of the data set is provided as 
context information and can be rendered at a coarser level 
of detail. Previous volume rendering algorithms have
been primarily based on OpenGL or Open Inventor. With
the advent of more reliable and powerful versions of 
Java3D, it is now possible to develop web-based
rendering clients in Java [4, 5]. Cross-section extraction 
can be done either on the server side [6] or on the client 
side [7]. 2-D texture-based methods [8] have been
introduced to make use of advanced capabilities of
hardware-accelerated graphics pipelines [7, 9, 10]. Our 
approach uses a Java3D-based texturing method, which is 
portable and hardware-platform independent.
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                   Figure 1:  Scalable visualization system

     Various image compression methods, e.g., RLE, LZW 
(lossless), and JPEG (better compression, but lossy), have 
been discussed in the past. Wavelet compression, which is 
actually a combination of a transformation in the
frequency domain and compression of the detail
coefficients using one of the lossless methods, has proven 
to be a powerful tool for 1-D signal processing and 2-D
image processing [11, 12]. In our method, we apply this 

method to 3-D volume data, which results in better overall 
compression rates. Multiwavelet image compression
techniques [13] and Multi-resolution Trees [14] have been 
applied to biomedical data sets (CT, MRI), vector data 
(fMRI, cryosections, oceanographic data) [15], and many 
other applications, including for example Synthetic
Aperture Radar (SAR)[16], a remote sensing technology.

      In most cases, wavelet transformations have only been 
discussed for the two-dimensional case. During the past 
decade, volume rendering has gained importance because 
hardware-accelerated graphics cards are readily available
on desktop systems. This inspired us to use the Haar 
wavelet transformation technique for efficient data
transformation, and more importantly, faster
reconstruction of 3-D volumes on the client side.
Wavelets are local in both the frequency and the spatial 
domain. This helps to preserve features and represent 
functions with discontinuities and sharp edges in a more 
compact way and still achieve a reasonable approximation
[11]. The detail coefficients usually have very small 
values. Sometimes they can be neglected or discretized in 
order to achieve better compression rates. The high
compression factor and efficient reconstruction methods 
for 3-D sub-volumes make wavelets an excellent tool for 
remote interactive rendering at multiple levels of detail. 
Transformation techniques using wavelets have also
proved advantageous when evaluating the image quality 
and comparing it to the quality of a 3-D rendering of the 
original data set. Wavelets have proved to be faster in 
terms of computational complexity as compared to other 
transformation schemes such as the Fast Fourier
Transform (FFT). The following section provides a
comprehensive motivation and a step-by-step introduction
for a memory-efficient 3-D wavelet transformation and 
subsequent level-of-detail rendering, which will be
discussed in later sections.

3. IMPLEMENTATION

3.1 EXTRACTION OF 2-D CROSS-
      SECTIONS FROM THE DATA SETS

The Scalable Visualization Toolkits are available both in a 
Java and in a C++ version. We have used the Java version 
to read the data as a sequence of 2-D cross-sections from 
the file (standard storage layout). The data set represents a 
CT scan of a human brain (ctbrain.vols) and consists of 
512 x 512 x 231 elements. The size of the data set, which 
is stored as a single file, is 60,555,264 bytes (approx. 57.8 
GB). The data set is composed of 231 cross-sections, each 
consisting of 512 x 512 pixels. The Scalable Visualization 
Toolkit provides a method that reads a range of elements 
from a data set, and returns their values in the host’s byte 
order and word size. This method implements a decoder, 
which reads the data from the data set and decodes its 
format. The resulting byte stream is stored in an internal 
buffer. The data set is too large to be read entirely into 
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memory. Therefore, we are reading only two slices into 
memory at each time, which is sufficient to apply our 
localized 3-D wavelet scheme. As each cross-section of 
the ctbrain.vols data set consists of 512 x 512 elements, a 
total of 262,144 elements must be read from the data set 
in each cycle (Figures 2 and 3).

        Figure 2: One of the 231                 Figure 3: A single cross-
          cross-sections of  the                   section of the ctbrain.vols
          ctbrain.vols data set                                   data set

3.2 EXTRACTING SUB-VOLUMES FROM
      THE DATA SETS

There are situations where it is not possible to render the 
entire data set at full resolution, or where the user might 
not be interested in the whole data set. For example, a 
biologist or physician might want to select a particular 
region of interest for his  experiment or analysis. To 
handle such situations, sub-volumes of the data set need 
to be extracted [17]. The Scalable Visualization Toolkits
implement methods to deal with a so-called chunked
storage layout scheme.

     One of these methods computes a one-dimensional
memory index corresponding to the given n-dimensional
grid coordinates in the data set. This index is used to read 
the data from the data set by using the method that was 
described in the previous section. The chunked file format 
has been used to extract sub-volumes from a human brain 
(ctbrain_c32.vols, Figure 4).

Figure 4: Cross-sections of different sub-volumes

3.3 3-D HAAR WAVELET 
      TRANSFORMATION ALGORITHM

After the cross-sections have been extracted, the data sets 
are transformed using the 3-D Haar wavelet
transformation. This transformation is one of the simplest 
and basic transformations from the spatial domain into a 
local frequency domain. In the discrete case, the integrals 
can be reduced to simple arithmetic operations. This
applies to a one-dimensional signal as well as to the 2-D,
3-D, or higher-dimensional case. To give a better idea of 

the actual implementation of the wavelet transformation, 
we illustrate the procedure with a simple example [18].

Assume we have a one-dimensional image with an 
eight-pixel resolution, where the pixels have the following 
values:

7       5       3       9       3       7       5       3

     By applying the Haar wavelet transformation we can 
represent this image in terms of a low-resolution image 
and a set of detail coefficients. The transformed data 
coefficients are obtained by averaging two consecutive 
pixels, while the detail coefficients represent the
difference between the average and one of the two
consecutive pixe ls. So the above image will be
represented as follows after the first cycle:

Low-resolution image:       6       6       5       4
Detail coefficients:             1 –3 –2       1

     Now the original image can be represented as a low-
resolution image ((a+b)/2), which consists of four pixels, 
and another four-pixel image, which contains the detail 
coefficients ((a–b)/2). Recursively iterating this algorithm 
leads to an image that is reduced by a factor of two for 
each cycle.

     The detail coefficients are required to reconstruct the 
image. Reconstruction of the original image involves
adding and subtracting the detail coefficients to and from 
the low-resolution image data. This way the first part of 
the image (the low-resolution part) can be transmitted 
first, while the detail coefficients are added later to refine 
the image.

     This simple 1-D scheme can be lifted to higher
dimensional cases. For a 2-D wavelet transformation, the 
algorithm is applied in x-direction first, and then in y-
direction. Similarly, in 3-D wavelet transformation the
structures are defined in 3-D and the transformation 
algorithm is applied in x-, y- and z-direction successively. 
One cycle for an n-dimensional data set is defined as the 
completion of the algorithm for all n directions. Details 
about the data structures and our implementation are
discussed in the following section.

     As mentioned earlier, very large-scale data sets are
considered for this transformation technique. Therefore 
the algorithm must be scalable. In order to obtain
scalability, we use the file system to buffer intermediate 
steps for each cycle, before we proceed to the next level.

     The array sizes are expressed in powers of two. More 
precisely, this means that the original resolution of the 
images is converted into the next larger power of two, and 
the array dimensions are adapted accordingly. For the
above data set, the 3-D array defined is 512 x 512 x 256. 
If the buffer would be too large, it can be reduced to two 



adjacent slices, which are required to do the last step of 
the 3-D cycle. While loading the slices into the 3-D array, 
care is taken to fill in the extra space allotted by zeros.

       Figure 5:  Original  Volume           Figure 6: First run: x-direction

      For the first cycle, the transformation algorithm is first 
run along the x-direction, row by row, for each of the 231 
slices. A line buffer would be sufficient to perform this 
operation, but we prefer to use a 2-D buffer for faster 
access and more efficient file transfer from the Scalable
Visualization Toolkits.

     As shown in the image above (Figure 6), the image 
array is split into two halves containing the transformed 
data and the detail coefficients. The transformed data 
coefficients are low-pass filtered while the detail
coefficients are high-pass filtered. After transforming the 
data set in x-direction, this 3-D array is then transformed 
along the y-direction. The resulting 3-D array is shown in 
Figure 7.
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   Figure 7 : Second run: y-direction    Figure 8: Third run: z-direction

      Finally, the 3-D array is transformed along the z-
direction and the resulting 3-D array is represented as 
shown in Figure 8.

     The final array structure gives us a low-resolution
version of the 3-D volume (the LLL segment) in one sub-
octant, and the detail coefficients, which are used for the 
reconstruction, in the other seven sub-octants and in the 
sub-octants of the next higher levels. The indexing of the 
array is defined such that the transformed coefficients are 
stored in the upper-left-front corner for each successive 
cycle. For each cycle, the size of the volume is reduced by 
a factor of eight. During consecutive cycles, only the
upper left portion of the transformed volume is
considered, leaving the detail coefficients intact. The
number of cycles m = ld (max(x_size, y_size, z_size))  is 
limited by the size of the data set. If a cycle cannot be 
completed, because one dimension is smaller than the
others, a null transformation can be used. In our
implementation, we simply stop the cycles. Usually the 
limit l is chosen so that l < m.

3.4 3-D RECONSTRUCTION USING 
      TEXTURE MAPPING 

The rendering algorithm uses three sets of perpendicular 
2-D cross-sections, which are mapped onto polygonal 2-D
planes. The algorithm is implemented in Java3D.
Rendering on the client side makes it possible to
implement interactive features, such as rotating, scaling, 
and selecting a region of interest. The wavelet
reconstruction algorithm is fast enough to decode the
textures on the fly, and as new data streams in, it is 
automatically added to the texture planes. The texture 
planes always have the same size. If the resolution of the 
current cross-section is lower than the actual size of the 
texture plane, pixels are simply duplicated. Interpolation
of pixel values would give a slightly better visual
impression, but those operations are prohibited due to 
performance limitations. Artifacts due to limited
resolutions are only temporary and are usually
compensated very quickly by adding the next level of 
detail as soon as it has been transmitted by the server. 

        Figure 9: Texture images mapped onto a stack of polygons

     A TextureLoader utility class in Java3D is used to load 
the texture images. The 2-D cross-sections are then
mapped onto an aligned series of parallel polygons in 
back-to-front order. Interesting effects can be obtained by 
making the polygons semi -transparent [19]. Fast blending 
between an opaque view and a simulated X-ray image is 
possible (Figures 10 and 11).

Figure 10: Back-to-front:                       Figure 11: Simulated X-ray
          A 3-D view of the ear                                             view

     Instead of using per-plane transparency, we can also 
use per-pixel transparency. Background pixels can be
eliminated, keeping the rest of the slice intact, or the brain 
can be made transparent in order to extract and highlight 
the bone (see Figures 14 and 15). The transparency
transfer function determines the appearance of the 3-D
reconstruction.
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     To access and modify the RGBA pixel values of the 2-
D cross-sections, Java2D BufferedImage and ColorModel
classes have been used. The alpha components of the
pixe ls constituting the skull are set to zero (opaque), while 
the alpha component of the remaining pixels is set to 255. 
Java provides an efficient method for a binary test if a 
pixel is fully transparent or fully opaque. During the
rendering process, the alpha component of each pixel is 
checked. If the value is zero, the pixel is drawn,
otherwise, the pixel is not drawn. Using this method, it 
was possible to achieve an additional performance gain. 
To implement this, we used the RenderingAttributes class.

4. RESULTS

We applied our 3-D Haar wavelet transformation
algorithm to a CT scan of a human brain (512 x 512 x 
231). The following images show a cross-section of the 3-
D volume at three different levels of detail (Figure 12).

1st cycle                                                    2nd cycle

                   3rd cycle                                                      4th cycle

                  Figure 12: Compressed images in successive cycles

     Each cycle reduces the size of the original volume by a 
factor of eight (23). By applying a run-length encoding 
scheme, we were able to obtain much better compression 
rates for our 3-D algorithm than for a conventional 1-D or 
2-D algorithm. The 3-D method makes it possible to 
transmit a low-pass filtered sub-volume from a Unix-
based server system to a Java3D rendering client over 
standard-bandwidth Internet and Intranet networks, and 
then successively transmit more data to improve the
resolution and quality of the 3-D reconstruction.

1st cycle                                                       2nd cycle

                 3rd cycle                    4th cycle

Figure 13: Compressed image data and
detail coefficients after four  cycles

     Remember that the data set is stored on a server with 
large storage capacity, while the Java3D-based rendering 
client runs on a desktop machine. Results of the back-to-
front projection technique using Java’s binary
transparency test method are shown below.

Figure 14: 3-D reconstructed                             Figure 15: 3-D volume
                   volume                                                showing the bone

5. CONCLUSIONS

3-D Haar wavelet decomposition, lossless data
compression and efficient data reconstruction methods 
have enabled the implementation of an interactive
rendering algorithm in Java3D. The image quality is
satisfactory for preview images and web-based rendering. 
This paper has discussed the implementation of a scalable 
decomposition algorithm for sub-volumes and a fast 3-D
reconstruction and rendering algorithm, which allows us 
to combine different levels of detail in a 3-D image and 
successively add detail information to the image without 
the necessity to recompute the entire volume. The Java3D 
implementation is platform-independent and fully
scalable. Future work will involve better rendering
algorithms, which will enhance the visibility of inner 
sections of the data by using precomputed normals and 
transparency, which is currently a problem in Java3D due 
to limitations in 3-D texturing capabilities. The algorithm 
will also be ported to use the C++ version of the Scalable
Visualization Toolkits in order to overcome some of these 
limitations.
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