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Abstract: Over the past years, the interaction between humans and computers (HCI)
evolved to one of the most important research topics in computer science. There-
fore, finding a way for an intuitive, easy and affordable interaction is the main chal-
lenge. Optical markerless tracking using consumer hardware can satisfy these prob-
lems. However, in order to be able to interact in an efficient way, the tracking and
furthermore the interaction must be handled in real time. This leads to efficient use
of current GPUs in order to speed up the tracking and furthermore the gesture recog-
nition. Involving these issues, an approach for an implementation and system will be
presented in the following paper.

1 Introduction

Nowadays, humans are surrounded by a highly sophisticated environment and technology.
From these circumstances, the interaction and in addition the human-computer interaction
(HCI) is arising to a very important research topic among scientists. Interacting with
computers can be handled in many different fashions and furthermore with a huge amount
of different interaction devices. Consequently, the interaction should be as intuitive and
simple as possible in order to provide an efficient and satisfying way for interaction even
for untrained persons .

In recent years, many different interaction types and sophisticated hardware input devices
have been developed. In this regard, one of the intuitive options for interaction commands
are poses and gestures, which can be detected in a satisfying manner by additional hard-
ware, e.g. data gloves or markers. However, most untrained or novel users are not familar
with wearing additional hardware devices and behave unnatural. Although, the devices
have become smaller and more lightweight, they might still be uncomfortable to wear.



Therefore, the question arises whether it is possible and sufficient to track only the poses
and gestures of the users and therefore their hands by means of skin detection in order to
obtain information for interaction purposes.

Commercially available optical tracking systems are often quite expensive and usually
require markers or other visual means for optical reference. Therefore, the question arises
whether we really need those tracking devices or whether off-the-shelf components like
webcams or digital cameras can also be sufficient for this type of interaction.

Based on these ideas, a system has been developed which facilitates optical tracking with-
out optical markers for human gesture-controlled real-time interaction with a software sys-
tem. The real-time capability is accomplished by using a GPU-accelerated computation
method.

2 State of the Art

Gaining insight into current state of the art research in human-computer interaction (HCI),
many different interaction methods and approaches as well as hardware devices exist.
These methods can be categorized in different tracking methods:

• Pointing devices, which are tracked in context of the users, and allow a three dimen-
sional interaction, e.g., wands [CB03], or the dragonfly device [SR03],

• Spot pointing devices, e.g. laser pointers [ATK+05, ON01], where the resulting spot
is used for selecting or moving of objects or writing on the screen,

• Or trackable interaction devices, e.g. the Cubic Mouse [FPW+00], or data gloves
[Imm07], where the position needs to be tracked in order to obtain interaction infor-
mation for the applications.

However, the user is always dependent on the use of a specific device for the interaction,
keeping his or her hands occupied, which may not always be feasible, for instance, in a
sterile medical environment.

In order to be independent of additional devices, interaction should be kept as intuitive
and natural as possible. One good solution is the tracking of the user and the use of eye
movements to control navigation or detect the user’s focus [BDDG03] (gaze tracking).
However, a serious drawback to this method is the anthropogenic fact that humans tend
to focus on different targets in very short time intervals, which results in difficulties for
deciding whether a change of the eye position should result in a scene change or not
[Zha03]. When considering which human bodily expressions can or should be tracked,
usually the hands come to mind first, as they are certainly the most natural and intuitive
interaction devices.

In recent years, different approaches for using the hands for human-computer interaction
have been studied and developed. Strickon and Paradiso [SP98] tried to track hands mov-
ing over a low-cost laser-scanning rangefinder. With this device, the user interacts with



a laser in front of a screen. Varona et al. [VRL05] and Thayananthan et al. [TSTC06]
presented other approaches for tracking of hands and faces trying to classify gestures by
a hierarchical Bayesian filter, which consisted of different rotations of the gesture. They
demonstrated that building up different rotated gestures in preprocessing can be avoided
by using rotation invariant gestures.

Nowadays, quite complex and furthermore expensive camera solutions and systems exist,
which are able to track a person or interaction devices. However, these devices often need
a specific setup and may require additional hardware. Furthermore, they often require re-
flectors or other optical indicators, so called markers or targets, which must be attached
to the desired tracking object [Gmb07]. In this article, we develop other tracking options,
employing consumer hardware such as webcams or digital cameras and develop a marker-
less gesture-based input method. In addition, the computational power of the GPU is used
to accelerate computations and to obtain real-time capability of the detection and tracking
system. Modern available webcams or digital cameras have a sufficiently high resolution
of at least 640x480 pixels and a frame rate of 25 to 30 frames per second. Furthermore,
current computers are mostly equipped with satisfying graphic cards, that can take care of
the necessary computations in order to match the real-time constraints, which comes along
with the requirements for smooth interaction.

This article presents an efficient way of interacting with virtual environments by using con-
sumer hardware. In Section 3, the basic concepts and ideas of the system will be presented.
Within this Section, a short system overview will be given, followed by a description of
the image capturing and the necessary image processing steps ofskin detection, noise fil-
tering, and outline extraction. For acceleration purposes, these steps are computed on the
graphics processing unit (GPU). In section 4, the pose and gesture detection is explained.
Therefore, some basic operations on images must be explained first. These are the so-
called image moments and their computation, which will be used for the comparison of
the captured regions to poses, which are stored in a database. The paper concludes with
results from the skin detection and gesture recognition algorithms and with an outlook on
future work.

3 Markerless Interaction

In the following section first a short overview of the system architecture and the usage of
the algorithms on the GPU is presented. Then, the different steps of capturing an image,
applying skin detection, noise removal and silhouette reduction are described. The results
are then used for pose and gesture detection, as described in Section 4.

3.1 System Architecture

In many applications, the real-time responce of the system for the interaction task is most
important providing an immediate feedback to the user. Consequently, tracking and recog-



nition must be handled as fast as possible, preferably at the same rate as images are dis-
played or obtained. Otherwise, the user could be easily confused or irritated and would not
know whether he or she has already initiated an action. As a result, it is important to handle
all necessary calculations within a given time frame. Although modern CPUs are becom-
ing increasingly faster, it is sometimes difficult to process all incoming and outgoing data
in real-time. Many researches now explore the potentials of the current graphic processing
units (GPUs). Furthermore, by now the GPU is not only utilized for graphical purposes,
but also for performing highly parallel tasks efficiently. The usage of graphic cards for
such a purpose is defined as general purpose computation on the GPU (GPGPU for short)
[Fun05, FM04]. Textures or in this case image data, as obtained from digital cameras
or webcams, are well-suited for the computation and execution of multiple operations in
parallel on the GPU.

Figure 1: Scheme of the algorithm

The current implementation of the system uses advanced features and acceleration capa-
bilities of the GPU. An outline of the system architecture is given in Figure 1. First, the
camera image is captured and transmitted to the GPU as a texture. Next, the skin de-
tection, which is presented in 3.2, is performed on the GPU implemented as a fragment
shader. The opening of the image, which is separated in an erosion and a dilation part,
reduces noise in the binary image. This algorithm can also be efficiently computed on the
GPU. The results from the filter kernels are stored as alpha values in the camera image.
All of these algorithms are implemented as fragment shaders. After their computation, the
image is transmitted to the CPU where the remaining tasks are performed. The clustering
as well as pose and gesture detection based on image moments, which will be handled in
Section 4, cannot be implemented as a highly parallel GPU algorithm and therefore are
carried out on the CPU.



3.2 Skin detection

Common skin detection methods classify pixels according to a specific color space, e.g.,
RGB, normalized RGB, HSV, or YCrCb. Other methods try to classify skin regions based
on probability maps, which are generated using training sets. This process needs the man-
ual selection of the regions containing skin, and is therefore expensive. Neural networks
can be used to simplify it. A more detailed overview of current state-of-the-art approaches
are given by Martinkauppi et al. [MSP03] and by Kakumanu et al. [KMB07].

For the detection of skin in form of a binary classification, Gomez and Moralez proposed
an approach based on normalized RGB values [GM02]. The normalization of the RGB
values reduces the ambient illuminance and offers the advantage of being more robust
against varying light conditions. The decision whether a pixel is classified as ”skin” or
”not skin” is made by logically combining the following three thresholding equations:

r

g
> 1.185 and

rb

(r + g + b)2
> 0.107 and

rg

(r + g + b)2
> 0.112 (1)

where r, g, b ∈ [0, 1] are the normalized RGB values.

If the query succeeds in all three cases, the pixel is classified as ”skin”, otherwise as ”not
skin”. Consequently, when applying this skin detection method to a captured image, the
result will be a binary coded image. This separates the image into regions containing either
”skin” or ”no skin” (see Figure 2).

(a) Captured Image (reproduced in color on p. 13) (b) Image after skin detection

Figure 2: Applying the skin detection to a captured image

3.3 Noise reduction

When using consumer off-the-shelf cameras, a well known problem is their susceptibility
to noise. In order to improve the captured image, one can smooth it using a discrete



Gaussian filter. For this, the image is convoluted with a Gaussian filter mask. However,
when the noise reduction is applied to the captured image, it is already in a binary format
(see Figure 2). Applying a Gaussian filter to a binary image would result in blurred edges
and increased pixel errors. To avoid this, morphological operators are employed as they
are more efficient on binary images. We use an opening operation, which is a combination
of an erosion and a dilation filter.

Figure 3: Opening of a binary image (reproduced in color on p. 13)

The erosion as well as the dilation steps are applied as filter kernels of a 3x3 matrix. An
example is shown in Figure 3. Additional information on image processing techniques and
morphological operations can be found in [Jäh97].

In order to receive the contour or silhouettes of the segmented image, algorithms and meth-
ods for edge detection must be applied. Multiple approaches have been described in the
literature, e.g., gradient-based methods like Sobel or Canny operators [Jäh97]. However,
for binary images, the computation can be done in a more efficient way by applying a
modified hit-miss operator. The defined hit-miss operator operates as a search operator for
a 4-connected neighborhood of the current pixel with the value ”1”. If no zero is found in
the neighborhood of the pixel, the value of the pixel is set to zero. As a result, only the
outline of an object remains visible (represented by ”1” pixels).

(a) Original image and detected contours (reprduced in color
on p. 13)

(b) Result from sample image

Figure 4: The modified hit-miss operator



4 Gesture Detection

In the following section the clustering of the resulting image is described. After that, the
concept of image moments is explained. They are calculated for the regions previously
found by the clustering and are compared to the moments in the stored database. Finally,
the action assigned to the detected pose is performed.

4.1 Clustering

After the computation of the outlines of the skin region done on the GPU, these regions of
interest are separated into clusters. Without region clustering a recognition of poses is not
feasible. This can be seen in Figure 4. This image consists of several regions, e.g. the eyes,
the head, and the hand. It should be noted that there is some noise present in the image.
If the whole image was compared to a pose (e.g. as seen in Figure 5), there would be
no success, because the image does not exclusively contain the pose. There are still some
other objects present in the image, which lead to incorrect results. Therefore, the respective
discrete regions must be found and clustered. In order to gather the regions, region growing
[Ver91] is used. An 8-connected neighborhood is considered for determining connected
regions. The boundary of each region is returned as a result.

Comparing gestures or poses is challenging. Several solutions exist, e.g. performing a
pixel-wise comparison of two images or image regions. However, this method can only
be used if the reference image and the searched region have the same scale, the same
rotation, and the same position. Therefore, when dealing with poses or gestures, a pixel-
based comparison approach is inefficient and will not provide sufficient results. The next
section describes a more appropriate solution to this problem. The method is called ”image
moments”.

4.2 Image Moments

The concept of moments is well known in physics and mathematics. Image moments are
specific weighted averages of image pixels. These moments, or in this context the values
of the moments, represent the feature which is supposed to be recognized. In our case, the
feature is a gesture or a pose. Consequently, a definition of moments is required which is
invariant to translation, rotation or scale. In order to be able to define and compute such
moments, we define raw moments:

Mij =
w−1∑
x=0

h∑
y=0

xiyjI(x, y), (2)

where I(x, y) is the pixel intensity at location (x,y), w and h the width and the height
of the image, and i, j ∈ N. The raw moments are neither invariant to translation nor to



scale or rotation. In order to devise a translation invariant representation, the region is
moved to the origin. These moments are called central moments. For this, the centroid
(xc, yc) ∈ R2 can easily be calculated (xc, yc) =

(
M10
M00

, M01
M00

)
. The central moments are

calculated by:

µij =
∑

x

∑
y

(x− xc)i(y − yc)jI(x, y). (3)

Central moments are still not scale and rotation variant. For scale invariance, the central
moments are dividedby the moment µ00, which is the same as M00. These moments are

ηij =
µij

µ
(1+ i+j

2 )
00

for i+ j ≥ 2. (4)

In order to have a rotation invariant representation of these moments, Hu proposed a set
of seven rotation invariant moments [Hu62]. Flusser proved in [Flu00] that a set of six
moments is sufficient because of dependencies of two rotation invariant moments. These
moments are

ψ1 = η20 + η02,

ψ2 = (η30 + η12)2 + (η03 + η21)2,
ψ3 = (η20 − η02)((η30 + η12)2 − (η03 + η21)2) + 4η11(η30 + η12)(η03 + η21),
ψ4 = η11((η30 + η12)2 − (η03 + η21)2)− (η20 − η02)(η30 + η12)(η03 + η21),
ψ5 = (η30 − 3η12)(η30 + η12)((η30 + η12)2 − 3(η03 + η21)2),

+(3η21 − η03)(η03 + η21)(3(η30 + η12)2 − (η03 + η21)2),
ψ6 = (3η21 − η03)(η30 + η12)((η30 + η12)2 − 3(η21 + η03)2),

−(η30 − 3η12)(η21 + η03)(3(η30 + η12)2 − (η21 + η03)2).

The moments of the poses are represented by this set of six values and are invariant to
rotation, translation and scale. They can be computed as a prepossessing step for the
stored poses in the gesture database.

4.3 Hierarchical Moments

In order to achieve higher recognition rates, the image moments are hierarchically build.
The hierarchical moments can be described as moments of the poses in different resolu-
tions. An example for the poses is presented in Figure 5.

The poses and their corresponding values are stored in the database. This reduces the
computation time during gesture recognition.



(a) Pointing Gesture (b) Rotation Gesture

Figure 5: Two Sample Poses

4.4 Pose Detection

The resulting regions of the clustering, given by their bounding boxes, are used for the pose
detection. For this purpose, hierarchical moments for the regions as previously defined are
calculated and compared to the stored moments in the database. If the results are within
a certain threshold range, the region is recognized as containing a pose. Two examples of
the original image and the resulting poses are shown in Figures 6.

(a) Captured Image of a pointing ges-
ture (reproduced in color on p. 13)

(b) Resulting image with recognized
pointing gesture

(c) Captured Image of a grabbing ges-
ture (reproduced in color on p. 13)

(d) Resulting image with recognized
grabbing gesture

Figure 6: Examples of recognized poses



4.5 Following of Hands

The regions given by the clustering might contain poses. The detection based on the image
moments provides the information, whether the region contains a pose. These regions
usually move slowly. When comparing the resulting regions from one frame to another, the
corresponding regions of the two frames usually overlap. Therefore, a simple overlapping
test for axes-aligned bounding boxes can prove this issue. Having found two overlapping
regions, the changing of their area usually remains in a certain threshold. In the current
implementation, the threshold is set to 90%, which lead to sufficient results. So, if a pose
was detected in a frame, and is not detected in the following frame, it is possible to keep
track of the position of the hands.

5 Results and Future Work

Most cameras have a frame rate of either 25 or 30 frames per second, and the computation
has to be done within a time frame of about 0.03 seconds to achieve interactive response of
the visualization system. With the presented GPU accelerated approach the computation
can be handled within this time interval, which is important for realtime interaction.

The recognition of poses and gestures has been tested under different lighting conditions.
The overall recognition rates depending on the normalized RGB values were sufficient.
However, in dark rooms as well as under direct sunlight exposure, the pose and gesture
recognition was insufficient and further research has to be done to calibrate the camera. In
dark rooms it is quite difficult to detect skin. This may become an issue if the gestures are
supposed to control an application projected onto a screen in a dark room. In this context
simple fluorescent gloves in combination with an ultraviolet lamp or an additional infrared
light source might lead to improved recognition results. For direct sunshine, it might be
possible to compute the average of the region and an offset, which can be substracted in
order to obtain higher recognition rates. Another option is an automated recalibration of
the camera to compensate for different exposure situations.

In order to accelerate the process of detection, following of the hands can be used as a pre-
diction model, where only a smaller or specific region of the image needs to be examined.
In this case, the moments, which are currently computed for all occurring regions, can be
reduced to the regions, where a gesture or pose was detected first.

Currently, interaction with the system is based on the first recognized pose or gesture.
Two-handed interaction is currently not supported. One of the next steps will be the imple-
mentation of the two- instead of single-handed interaction, which will result in advanced
possibilities for interaction. Furthermore, the current system is designed for single-user
interaction. Another aspect is multiuser interaction. For this, suitable metaphors or mech-
anism must be developed to facilitate this type of interaction.
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(a) Captured Image of pointing gesture (b) Captured Image of a grabbing gesture

Figure 7: Opening of a binary image

Figure 8: Original image and detected contours


