
Earthquake Visualization Using Large-scale

Ground Motion and Structural Response

Simulations

Joerg Meyer and Thomas Wischgoll

University of California, Irvine, Department of Electrical Engineering and
Computer Science, 644E Engineering Tower, Irvine, CA 92697-2625
{jmeyer|twischgo}@uci.edu

Summary. Earthquakes are not predictable with current technology. However, it is
possible to simulate different scenarios by making certain assumptions, such as the
location of the epicenter, the type and magnitude of the eruption, and the location
of a fault line with respect to buildings of a particular type. The effects of various
earthquakes can be studied, and the aftermath of the simulation can be used by
first responders and emergency management agencies to better prepare and plan for
future disasters.

This article describes methods for visualizing large-scale, finite element simu-
lations of ground motion based on time-varying tetrahedral meshes, and explains
how such a simulated earthquake scenario can be visually combined with a simula-
tion of the structural response. The building response is based on a simulation of
single-degree-of-freedom (SDOF) structural models.

The amount of data generated in these simulations is quite substantial (greater
than 100 gigabytes per scenario). Real-time, interactive visualization and naviga-
tion in a 3-D virtual environment is still challenging. For the building simulation, a
number of structural prototypes that represent a typical urban building infrastruc-
ture is selected. For the ground motion simulation, an efficient, topology-sensitive
tetrahedral mesh decimation algorithm suitable for time-varying grids and based
on a feature-preserving quadric error metric is used. The algorithms presented in
this chapter have the potential for being applied to other scienctific domains where
time-varying, tetrahedral meshes are used.

Key words: finite element simulation, tetrahedral mesh simplification, level-
of-detail, mesh reduction, hybrid rendering, earthquake simulation, ground
motion, structural response, scientific visualization

1 Introduction

According to the National Earthquake Information Center (NEIC), millions
of earthquakes occur every year. The majority of events are insignificant mi-

2 Joerg Meyer and Thomas Wischgoll

croquakes (less than 2.2 on the logarithmic Richter scale), but on average
approximately 7,000 earthquakes occur annually with a potential for a sig-
nificant impact on the infrastructure in an urban setting (Richter magnitude
greater than 4.5).

In the United States and in many other countries, the Richter scale is
used to measure energy released during an earthquake. On the Richter scale,
intensity increases in geometric ratio (table 1). An increase of one number
means the energy released is ten times greater. Thus an earthquake of 4.0 on
the Richter scale is ten times stronger than an earthquake of 3.0 on the Richter
scale [20]. Significant earthquakes (Richter magnitude greater than 4.5) are
characterized by the potential to destroy or to cause considerable damage to
buildings, bridges, dams, power and gas lines, etc.

According to the Southern California Earthquake Center (SCEC), a large
number of significant earthquakes occurred over the past few decades (figure
1), many of them close to known fault lines (figure 2).

Table 1. Richter scale and potential damage/loss.

Richter Scale Type of damage in a populated area

< 2.2 Microquake
2.2 Most people aware that an earthquake has occurred
3.5 Slight damage
4.0 Moderate damage
5.0 Considerable damage
6.0 Severe damage
7.0 Major earthquake, capable of widespread heavy damage
8.0 Great earthquake, capable of total damage/loss

The data structure for the ground motion simulation is a large-scale, de-
formable tetrahedral grid. This time-varying grid represents a layered soil
model, as it is typical for sedimentary basins, such as the one that we have cho-
sen for our simulation (figure 3). The basin is modelled as a three-dimensional
isotropic, heterogeneous anelastic medium. The domain is limited by absorb-
ing boundaries that restrict the amount and magnitude of spurious reflections.
Different configurations can be tested by varying the size and the layer com-
position of the volume represented by the grid.

A finite element simulation is performed over the idealized model shown
in figure 3. Idealized models are essential to understand physical phenomena
such as seismic wave propagation, and to verify calculation methodologies.
The model incorporates an idealized extended strike-slip fault aligned with
the coordinate system. The shaded area in figure 3 represents such a fault.

The tetrahedral mesh generated in this simulation consists of approxi-
mately 12 million nodes. For every node, a maximum velocity vector for 800
time steps is computed, representing a time history of the node for a time

Earthquake Visualization 3

Fig. 1. Earthquake magnitudes greater than 4.5 (1932 - 1997).

period of eight seconds in 10 milliseconds increments. The total amount of
data generated by this simulation is approximately 130 GB. This is a typical
size for a ground motion simulation of the given size and complexity.

This chapter describes a complete, self-contained method for efficient,
topology-sensitive time-varying tetrahedral mesh decimation based on a fea-
ture- and boundary-preserving quadric error metric. The goal is to visualize
such a large-scale dataset interactively, and to enable the user to navigate
the space defined by the grid both from an external point of view as well as
from a view point within the volume (immersive visualization). This type of
visualization enables an interactive analysis of the data, which is essential for
an in-depth understanding of the complex processes of ground motion and
structural response.

2 Related work

In earthquake-related ground motion simulations, volumes are typically repre-
sented as large-scale, time-varying tetrahedral meshes. The resulting datasets
are usually large, and datasets that exceed the size of the processor’s main
memory are difficult to store, and in the case of remote visualization require
significant amounts of time for data transfer over the Internet. The amount of
geometry data generated from such simulations is usually too complex for ren-
dering in an interactive display environment. The complexity of those meshes
mainly results from the large number of nodes considered in the simulation,
from the significant number of time steps necessary to capture various earth-
quake frequencies, and from the actual vector data (usually displacement or
velocity data) associated with the nodes [1, 4, 19].

For interactive visualization, it is critical to reduce the geometric com-
plexity of such large, time-varying meshes with minimal loss of detail in the

4 Joerg Meyer and Thomas Wischgoll

Fig. 2. Southern California earthquake fault lines and locations.

Fig. 3. Layered half-space with extended source fault.

spatial and in the temporal domain. The algorithm should be scalable, so that
an arbitrary number of time steps can be processed and visualized.

In the past, a significant number of algorithms have been developed to
address aspects of this complex problem. Tetrahedral meshes have been es-
tablished as a standard to represent large finite element meshes. Most other
data structures, such as voxel grids or scattered data fields can be either
broken down or tessellated into tetrahedral meshes. Tetrahedral meshes are
preferred for discrete volume representations because of the simplicity of the
primitives (tetrahedra).

We distinguish between surface and volume mesh simplification techniques.
Most volume decimation algorithms evolved from surface or polygon mesh
simplification algorithms [10, 13, 14, 16, 24, 25, 26, 27, 32], and most algo-
rithms provide solutions for topological inconsistencies that may occur during
or after the mesh simplification. Hierarchical representations are important for
interactive rendering of large tetrahedral meshes. Zhou et al. [33], Gerstner

Earthquake Visualization 5

et al. [11], and Ohlberger et al. [21] present frameworks for hierarchical rep-
resentations of tetrahedral meshes. However, none of the described methods
are applicable to time-varying data without modifications.

After an initial overview of surface decimation algorithms (section 2.1) and
volume decimation algorithms (section 2.2), we discuss a new method called
TetFusion [2] and some of its properties and limitations (section 2.3). Specific
results for this method are presented in section 2.4. Section 3 explains the
error metric, and section 4 addresses time-varying data sets. Section 5 finally
gives some results for the new method and explains how it can be used for the
given application domain (ground motion and structural response simulation).

2.1 Surface mesh simplification

Some ideas that were developed for surface mesh simplification can also be
applied to volume meshes. Therefore, we provide a short overview of existing
surface mesh simplification methods.

Surface or polygon mesh simplification algorithms are either based on ge-
ometry reduction or iterative refinement. Since we are mostly interested in
a direct reduction rather than the creation of a new mesh using refinement
which usually requires global or local access to the reference mesh making the
algorithm less scalable, we focus primarily on the first technique, i.e., geom-
etry reduction. Most methods represent the mesh with a smaller number of
nodes that are taken from the original mesh or by calculating new nodes that
represent several nodes in the original mesh.

Schroeder et al. [26, 27] propose a method for decimation of triangle
meshes. Turk [32] uses a set of new points to re-tile a polygonal mesh. Hoppe
[14] takes a different approach and introduces progressive meshes that can be
used for streaming data (level-of-detail representation). This method was con-
sidered a major milestone in polygon mesh simplification. For further study,
Garland [9] provides a comprehensive overview of other mesh simplification
techniques.

Garland and Heckbert [10] introduce a quadric metric as an error metric
for polygonal mesh simplification. A detailed discussion of the application of
this metric to volume meshes is given in section 3.

2.2 Volume mesh simplification

Trotts et al. [30] were amongst the first to implement a tetrahedral volume
mesh decimation algorithm. In their work, they extend a polygonal geometry
reduction technique to tetrahedral meshes. They define a tetrahedral collapse
operation as a sequence of three edge collapses, while keeping the overall
geometric error within a certain tolerance range. The error metric is based
on a spline segment representation of the tetrahedra. Since an edge collapse is
used as the atomic decimation operation, several topological problems, such
as volume flipping, are addressed and discussed. The algorithm suffers from

6 Joerg Meyer and Thomas Wischgoll

overwhelming overhead for storing and updating the connectivity information
(edge list).

Staadt and Gross [28] also discuss an extension of the edge collapse algo-
rithm for polygonal meshes to tetrahedral meshes. They interpret tetrahedra
as a specialized class of simplicial complexes [24] and extend Hoppe’s work
on progressive meshes [14] to tetrahedral meshes. The article offers solutions
to the previously mentioned problem of volume flipping (negative volume),
and other topological changes that might occur, such as self-intersection, and
tetrahedra intersecting the boundary regions. Kraus et al. [17] use a similar
approach and also address the specific case of non-convex tetrahedral meshes.

Trotts et al. [31], in an extension to their earlier work [30], incorporate
an error metric that not only incorporates modifications to the geometry, but
also to the scalar attributes associated with the vertices. These attributes
are usually interpolated between the two nodes that constitute the collapsing
edge.

Cignoni et al. [5] use the same idea and apply it to tetrahedral meshes by
presenting a framework for integrated error evaluation for both domain and
field approximation during simplification. The article elaborately explores lo-
cal accumulation, gradient difference, and brute force strategies to evaluate
and predict domain errors while incrementally simplifying a mesh. The algo-
rithm also uses a quadric error metric, which is compared to other metrics in
this article [5].

Topology preservation is the main topic of the work published by Edels-
brunner [8]. He provides an extensive algorithmic background for ensuring
topological correctness during edge-collapse-based mesh simplification. Dey
et al. [7] provide detailed criteria for topological correctness, which can be
generalized to polyhedral meshes.

In the next section, we present a computationally efficient tetrahedral vol-
ume mesh simplification method that combines metrics for accurate field (at-
tribute) data representation with techniques for restraining volumetric topol-
ogy.

2.3 A combined mesh decimation technique: TetFusion

Recently, an efficient volume mesh decimation algorithm, TetFusion, was pub-
lished [2]. It addresses both geometry and attribute data preservation. We
summarize the properties and limitations of this algorithm, which lead to the
development of an improved method, QTetFusion, which uses a different error
metric and addresses problems such as volume flipping, boundary intersection,
and other critical changes in the topology (section 3).

The TetFusion algorithm employs a tetrahedral collapse as an atomic op-
eration (TetFuse) for mesh decimation. The idea is simple and intuitive: take
all four vertices of a tetrahedron, and fuse them onto the barycenter (the
geometric center) of the tetrahedron (figure 4).

Earthquake Visualization 7

Fig. 4. An illustration of an instance of the TetFuse operation.

The center tetrahedron is the target object that is supposed to be collapsed
onto its barycenter. The four other tetrahedra are affected by this change and
stretch in the direction of the target tetrahedron’s barycenter. Note that for
any affected tetrahedron, the vertex it shares with the target tetrahedron
moves away from the base plane formed by its other three vertices. In a fully
connected mesh, at least eleven tetrahedra collapse as a result of TetFuse
applied to an interior tetrahedron. This includes the target tetrahedron, the
four tetrahedra sharing one of the four faces with the target tetrahedron, and
at least six more tetrahedra that share one of the six edges with the target
tetrahedron. This means that each instance of an application of TetFuse causes
an efficient decimation of the mesh.

The TetFusion algorithm is based on multiple, error-controlled executions
of a primitive operation called TetFuse. The following paragraphs summarize
the inherent properties and limitations of TetFusion.

Symmetry : The volume of the collapsed tetrahedron is distributed symmet-
rically with respect to the barycenter between the affected tetrahedra in the
local neighborhood.

Efficient decimation: Each instance of TetFuse causes at least eleven tetra-
hedra to collapse for a non-boundary target tetrahedron, as explained in one
of the previous paragraphs. This results in a much higher mesh decimation
rate per atomic operation than in the case of an edge-collapse-based algorithm.

Avoiding flipping : Because of the symmetry of the decimation operation, the
vertex that an affected tetrahedron shares with the target tetrahedron (shared
vertex) tends to move away from its base plane (the plane formed by the
other three vertices of the affected tetrahedron, see figure 4). Hence, most
of the time the ordering of vertices in an affected tetrahedron does not get
changed from the original configuration, and the volume is represented cor-
rectly. However, if the barycenter of the target tetrahedron is located on the
other side of the base plane of an affected tetrahedron, flipping is possible

8 Joerg Meyer and Thomas Wischgoll

(figure 5). Such special cases can be avoided simply by checking if the point
has moved to the other side of the base plane of the affected tetrahedron,
which would result in a rejection of the current instance of TetFuse.

Prohibiting self-intersections of the boundary : TetFusion does not allow any

Fig. 5. Flipping may occur if the barycenter is on the other side of the base plane.

boundary tetrahedra to be affected. It has been verified that self-intersections
of boundaries occur only at sharp edges and corners [28], when an affected
tetrahedron pierces through one or more of the boundary faces of a bound-
ary tetrahedron. However, this is a serious limitation of the algorithm that
drastically affects the decimation ratio. An improved solution is discussed in
section 3.

Prohibiting boundary intersections at concave boundary regions : Cases of
boundary intersection occur when an interior tetrahedron stretches through
and over a concave boundary region. Such cases cannot be avoided completely
by employing the given error metric. TetFusion addresses this problem by lim-
iting the expansion of an affected tetrahedron, and by not allowing tetrahedra
in the vicinity of the boundary surface to stretch as a result of the collapse of
a target tetrahedron. This is also a limitation, which is address in section 3.

Locking the aspect ratio: Tetrahedra that exceed a pre-specified threshold of
the edge aspect ratio (long, skinny tetrahedra) are usually difficult to render
and therefore trigger an early rejection of the execution of TetFuse.

2.4 Example and results

Figure 6 shows an example of a decimated mesh. The 1,499,160 element blunt-
fin dataset was decimated using TetFusion in 187.2 seconds, and rendered on
an SGI R10000 194MHz with 2048 MB RAM, running Irix 6.52. The boundary
is perfectly preserved, while some of the data attribute values appear to be
slightly blurred due to repeated interpolation in the reduction step.

Earthquake Visualization 9

Fig. 6. Original (100%) and decimated mesh (36.21%) of the blunt-fin dataset.

In summary, the original TetFusion algorithm [2] was limited to interior
tetrahedra, thus leaving the surface intact, but at the same time unfortunately
also limiting the decimation ratio. The next section discusses an extension of
this algorithm, called QTetFusion (Quadrics-guided Tetrahedron Fus ion) [3].
It is a volume mesh simplification algorithm that employs a planar quadric
error metric to guarantee minimum geometric and attribute error upon each
instance of TetFuse. We show how this atomic tetrahedral collapse operation,
along with an efficient geometric error metric, can take care of complex mesh
inconsistency problems with minimal additional computational overhead. The
algorithm ensures that a mesh stays within (and infinitesimally close to) its
boundary envelope at all levels of resolution during simplification.

Almost all of the existing work addressing volume mesh simplification
evolved from edge-collapse-based decimation strategies that were originally
proposed for polygonal meshes. However, surface mesh simplification algo-
rithms cannot simply be scaled up to handle higher order simplicial complexes
because of additional geometric and topological constraints. Cases like degen-
erate simplices, violation of Delaunay tessellation, loss of topological genus
(undesired closing of holes or creation of new ones), violations of the convex
hull and boundary preservation properties, etc., must be specially taken care
of during volume mesh simplification. Such cases have already been identified
and can be avoided with special computational methods [7, 8]. However, al-
gorithms that present computationally less expensive simplification schemes
either do not handle all of these cases, or are spatially selective during deci-
mation and hence are limited in the achieved decimation ratio [2].

3 Tetrahedral Fusion with Quadric Error Metrics

To overcome the shortcomings listed in the previous section, we use QTetFuse
as a reversible atomic decimation operation for tetrahedral meshes [3]. The
algorithm operates on a list of nodes with associated attribute data, and a sep-
arate array that contains the connectivity information for every tetrahedron.

10 Joerg Meyer and Thomas Wischgoll

Both the point list and the list of tetrahedra are updated in the decimation
process. This is necessary because both tetrahedra are collapsed and new
points are generated by fusing some of the tetrahedra to a single point. For
a better understanding of the algorithm, we summarize the most important
definitions (section 3.1) that are needed for describing the algorithm (section
3.2), analyze the properties (section 3.3) of the algorithm, and provide some
details on the derivation of the employed planar quadric error metric (PQEM)
from previous polygonal methods (section 3.4) [10]. Finally, we explain how
the fusion point is calculated (section 3.5), and provide an example of the
results of the algorithm (section 3.6).

3.1 Definitions

In this section, we summarize notations and definitions that are necessary for
understanding the algorithm.

a) Target Tetrahedron: A tetrahedron that is selected for decimation.

b) Boundary Tetrahedron: A tetrahedron with one or more of its vertices lying
on the boundary surface. All other tetrahedra that are not on the boundary
are called interior tetrahedra.

c) Boundary Face: Triangle face of a boundary tetrahedron where all three
vertices lie on the boundary surface.

d) Fusion Point : Point of collapse of the four vertices of a target tetrahedron.
One target tetrahedron may have more than one valid fusion point depending
on the specified planar quadric error tolerance value.

e) Affected Tetrahedron: A tetrahedron that shares exactly one vertex with
a target tetrahedron. This shared vertex (target vertex) stretches the affected
tetrahedron towards and onto the fusion point of the target tetrahedron as a
result of QTetFuse.

f) Target Vertex : The vertex of an affected tetrahedron that it shares with
a target tetrahedron.

g) Base Triangle: A triangle formed by the vertices of an affected tetrahe-
dron, excluding the target vertex.

h) Deleted Tetrahedron: A tetrahedron that shares two or more vertices with
a target tetrahedron, which collapses as a result of the collapse of the target
tetrahedron.

Earthquake Visualization 11

3.2 Algorithm

The basic idea is to fuse the four vertices of a tetrahedron into a point (the
fusion point, see definitions in section 3.1). The fusion point (figure 7) is
computed so that minimum geometric error is introduced during decimation.
We employ a planar quadric error metric (PQEM) to measure and restrict
this error (see section 3.4).

The algorithm is driven by an efficient space redistribution strategy, han-
dles cases of mesh-inconsistency, while preserving the boundary envelope of
the mesh, and employs a PQEM to guarantee minimum error in the geomet-
ric domain when collapsing the tetrahedral elements. It maintains the input
mesh’s topological genus in the geometry domain at low computational costs.

In figure 7, the upper-left target tetrahedron collapses onto its fusion point.
The upper-right tetrahedron degenerates to an edge, which is consequently re-
moved (deleted tetrahedron). The lower affected tetrahedron stretches in the
direction of the corresponding fusion point. Note that for the affected tetra-
hedron, the vertex it shares with the target tetrahedron tends to move away
from the base plane formed by its other three vertices. If the shown target
tetrahedron is an interior one, at least eleven tetrahedra collapse as a result
of this operation (see section 2.3).

(a) Before collapse (b) After collapse

Fig. 7. An illustration of one instance of the QTetFuse operation.

The following section describes the main algorithm. QTetFusion is a locally
greedy algorithm. It features a pre-processing phase that evaluates PQEM s for
all the tetrahedra in the input mesh, and stores them in a heap data structure.
We employ a Fibonacci heap (because of its better amortized time complexity
compared to a simple binomial heap) to maintain the priority queue of tetra-
hedral elements addressed by their PQEM keys [3]. In fact, both a binomial

12 Joerg Meyer and Thomas Wischgoll

and a Fibonacci heap have a worst-case time complexity of O(m + n log n),
where m is the number of edges, and n is the number of nodes. However,
in a Fibonacci heap the insert operation is more efficient: O(1) vs. O(log n),
while the delete operation remains the same: O(log n). The main algorithm
is outlined below:

while heap is not empty
extract T with minimum ∆(T) from the heap
if none of adjacentTetrahedra(T) would flip as a result of T ’s collapse,
QTetFuse (T)

update heap

The procedure adjacentTetrahedra(T) returns a list of all the tetrahedra
adjacent to T . The geometric error ∆(T) is explained in section 3.4.

3.3 Properties

This section discusses the inherent properties of QTetFusion as a volume mesh
decimation algorithm for tetrahedral meshes.

Efficient decimation: similar to TetFusion (section 2.3).

Avoiding flipping : similar to TetFusion (section 2.3).

Simplified mesh restricted to the inside of (and infinitesimally close to) the
boundary envelope of the source mesh: Self-intersections of boundary elements
might occur when an affected tetrahedron pierces through one or more of the
boundary faces of a boundary tetrahedron. We prevent such cases by restrict-
ing the simplified mesh to remain inside its boundary envelope.

Avoiding changes of the topological genus of a mesh: The boundary envelope of
a polyhedral mesh defines its topological genus. Consequently, if the topolog-
ical genus of the envelope is preserved, topology preservation for the enclosed
volume is guaranteed. As a result, the algorithm guarantees that the simpli-
fied mesh remains confined to its boundary envelope. Therefore, the algorithm
cannot change the topology of the mesh, i.e., it is prevented from closing any
existing holes or from creating new ones. The latter is an inherent problem
of all edge-collapse-based decimation algorithms and usually requires complex
consistency checking. The proposed method requires only local testing of the
affected and deleted tetrahedra and is therefore relatively efficient.

3.4 Planar Quadric Error Metric (PQEM)

This section describes the error metric we employ to control the domain er-
rors during simplification. Garland and Heckbert [10] developed a computa-

Earthquake Visualization 13

tionally efficient and intuitive algorithm employing a Quadric Error Metric
(QEM) for efficient progressive simplification of polygonal meshes. The algo-
rithm produces high quality approximations and can even handle 2-manifold
surface meshes.

To obtain an error minimizing sequence of QTetFuse operations, we first
need to associate a cost of collapse with each tetrahedron in the mesh. As
described in [10], we first associate a quadric error measure (a 4x4 symmetric
matrix Q) with every vertex ν of a tetrahedron that indicates the error that
would be introduced if the tetrahedron were to collapse. For each vertex ν of
a tetrahedron, the measure of its squared distance with respect to all incident
triangle faces (planes) is given by:

∆(ν) = ∆(
[

νx νy νz 1
]T

) =
∑

p=faces(ν)

(app
T ν)2 (1)

where p =
[

px py pz d
]T

represents the equation of a plane incident on ν such
that the weight ap represents the area of the triangle defining p. Further, if n

represents the normal vector of p, then d is given by

d = −nνT (2)

Equation 1 can be rewritten as a quadric:

∆(ν) =
∑

p=faces(ν)

νT (a2
pppT)ν

= νT





∑

p=faces(ν)

(a2
pppT)



 ν

= νT





∑

p=faces(ν)

(Qp)



 ν

(3)

where Qp is the area-weighted error quadric for ν corresponding to the inci-
dent plane p.

Once we have error quadrics Qp(i) for all the four vertices of the tetrahedron
T in consideration, we simply add them to obtain a single PQEM as follows:

PQEM(T) =

4
∑

i=1

QP (i) (4)

If T were to collapse to a point νc, the total geometric error (for T) as ap-
proximated by this metric would be:

∆(T) = νT
c PQEM(T)νc (5)

14 Joerg Meyer and Thomas Wischgoll

3.5 Computing the fusion point

Consider a tetrahedron T = {ν1, ν2, ν3, ν4}. We compute a point of collapse
(fusion point ν) for T that minimizes the total associated PQEM as defined
in equation 5. According to [10], this can be done by computing the partial
derivatives of ∆(T), and solving them for 0. The result is of the form

−

ν = Q−1
1 [0 0 0 1]T (6)

where

Q1 =









q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1









(7)

Note that the terms qij are coefficients of the respective PQEM. There might
be cases when the quadric matrix used in the equation is not invertible. In
that case, we settle on the barycenter of T as the fusion point.

(a) Polygonal mesh (b) Polyhedral mesh

Fig. 8. Error ellipsoids for affected vertices when the primitive to be decimated is
a) an edge and b) a tetrahedron.

Note that the central ellipsoid in figure 8b) represents a level-set surface for
the P lanar Quadric E rror for the target tetrahedron shown. This quadric error
is the sum of quadric errors of the four constituent vertices of the tetrahedron.

3.6 Example

Figure 9 shows an example of a decimated mesh. The 12,936 element super
phoenix dataset was decimated using QTetFusion in 31.174 seconds, and ren-
dered on an SGI R12000 400MHz with 2048 MB RAM, running Irix 6.52. The

Earthquake Visualization 15

increase of computing time over the standard TetFusion algorithm is signifi-
cant (for instance, a factor of 61 for the super phoenix dataset, and 46 for the
combustion chamber ; see table 2 and compare with [2]). However, the deci-
mation rate in most cases was either slightly increased or at least preserved
(+12.46% for the super phoenix dataset, and -2% for the combustion cham-
ber. This is a good result, as the new QTetFusion algorithm has significant
topological advantages over the standard TetFusion method. Diagram 10 and
tables 2 and 3 provide some additional statistics for other datasets.

Fig. 9. a) Original (100%) and b) decimated mesh (46.58%) of the super phoenix
dataset.

Fig. 10. CPU time in seconds (vertical axis) vs. number of QTetFuse operations
(tetrahedral collapses) performed (horizontal axis).

4 Time-varying Tetrahedral Mesh Decimation

Extremely high decimation rates can be obtained by taking the temporal
domain into account. Instead of tetrahedra, we consider a mesh of hyperte-
trahedra that consists of tetrahedra that are connected across the temporal

16 Joerg Meyer and Thomas Wischgoll

Table 2. Number of tetrahedra, decimation ratio and CPU time for various datasets
(QTetFusion).

mesh n dec. rat. QTetFusion (s)

1. super phoenix 12,936 53.6% 31.174
2. blunt fin 187,395 49.3% 715.074
3. comb chamber 215,040 47.0% 976.603
4. oxygen post 513,375 46.0% 2,803.575

Table 3. Number of tetrahedra, number of decimated tetrahedra, number of QTet-
Fuse operations required, average number of decimated tetrahedra for a single QTet-
Fuse operation.

mesh n ndecim # QTetFuse Avg. ndecim

1. super phoenix 12,936 6,940 501 13.852
2. blunt fin 187,395 92,375 6,081 15.684
3. comb chamber 215,040 101,502 6,588 15.407
4. oxygen post 513,375 238,527 14,830 16.084

domain (figure 11). We define a hypertetrahedron as a set of at least two
(possibly more) tetrahedra where all four vertices are connected in the time
domain. Intuitively, a hypertetrahedron represents a tetrahedron that changes
shape over time. Every time step represents a snapshot of the current shape.
Without loss of generality, we can assume that the time domain is a linear ex-
tension of a three-dimensional cartesian coordinate system. As a consequence,
we connect corresponding vertices with linear, i.e. straight, line segments that
indicate the motion of a vertex between two or more discrete time steps. Since
many tetrahedra do not change significantly over time, hypertetrahedra can
be collapsed both in the temporal domain as well as in the spatial domain.
This results in hypertetrahedra that are either stretched in space or in time.
Mesh decimation in time means that a hypertetrahedron (4-D) that does not
change over time can be represented by a simple tetrahedron (3-D), just like a
tetrahedron can be represented by a single point. The opposite direction (ex-
pansion of a tetrahedron to a hypertetrahedron over time) is not necessary,
because a hypertetrahedron is collapsed only if it does not change significantly
in a later time step.

The latter of the previously mentioned cases turns out to restrict the
decimation ratio significantly. In the given example of earthquake simulations,
many tetrahedra in the peripheral regions do not change at the beginning and
towards the end of the simulation, but they are affected during the peak time
of the earthquake. Since we do not allow hypertetrahedron expansion from a
tetrahedron (split in the temporal domain), a large potential for decimation
is wasted. Also, for practical purposes the given approach is not very suitable,
because we need to be able to access the position of each vertex in the mesh

Earthquake Visualization 17

Fig. 11. Hypertetrahedron

Fig. 12. One affected node, two affected tetrahedra.

at every time step if we want to navigate in both directions in the temporal
domain. The reconstruction of this information and navigation in time with
VCR-like controls requires a global view of the data. This means that the
data cannot be processed sequentially for an infinite number of time steps.
Consequently, the algorithm is not scalable.

Figure 12 shows an example where one node is affected by a velocity vec-
tor. The velocity is proportional to the displacement, because all time steps
have the same temporal distance. Therefore, the arrow indicates the position

18 Joerg Meyer and Thomas Wischgoll

of the node in the next time step. Two tetrahedra are affected by this displace-
ment and change over time. In this example, it would be sufficient to store the
time history of the affected node (solid line) or the affected tetrahedra (dot-
ted lines). In order to reconstruct the mesh, it would be necessary to search
for the most recent change in the time history of each node, which would re-
quire keeping all time histories of all nodes in memory during playback. This
becomes particularly obvious if forward and backward navigation in time is
considered. Even though this method offers a very compact representation of
a time-varying tetrahedral mesh, we propose a different approach that enables
easier playback (forward and backward) of all the time steps in a simulation.

The standard method would be to decimate the mesh for each time step
separately by applying QTetFusion or some other mesh decimation technique,
resulting in very high decimation rates in the initial time steps (regular, undis-
torted grid, no disruption due to earthquake), and moderate decimation of
the later time steps where more information needs to be preserved. However,
this approach would result in different meshes for every time step, leading to
’jumps’ and flicker in the visualization. This would be very disrupting in an
animation or on a virtual reality display (section 5).

Therefore, we use a different approach. The idea is to preserve every time
step, which is necessary for playback as an animation and for navigation in
time. The mesh that has the greatest distortion due to the earthquake (the
velocity vector values associated with each grid node) is identified, and then
decimated. All the decimation steps that were necessary to reduce the com-
plexity of this mesh are recorded. For the record, it is sufficient to store the
IDs of the affected tetrahedra in a list, because for the given application the
IDs of the tetrahedra are identical in all time steps. Since tetrahedra are only
removed but never added, the IDs are always unique. These recorded steps are
then used to guide the decimation of the remaining meshes, i.e., the meshes
of the other time steps are decimated in the exact same manner as the one
whose features are supposed to be preserved.

Figure 13 shows that the decimation of t0 and t1 is guided by t2, because t2
is more distorted than any of the others. The decimated mesh should represent
all displaced nodes in the most accurate way, because these are the ones that
represent the significant features in the given application. Isotropic regions,
i.e., areas that are not affected by the earthquake, such as the three tetrahedra
at the top that are simplified into a single tetrahedron, expose only little
variance in the data attributes, and consequently do not need to be represented
as accurately, i.e., with the same error margin, as the significantly changing
feature nodes in the other time steps. Comparing the top scenario (before
decimation) and the bottom scenario (after decimation), the image shows
that the tetrahedra on the top that were simplified in the selected t2 time
step are also simplified in the other two time steps (t0 and t1).

The question that remains is how to identify this ’most distorted’ mesh.
Instead of using complex criteria, such as curvature (topology preservation)
and vector gradients (node value preservation), we simply divide the length

Earthquake Visualization 19

of the displacement vector for each node by the average displacement of that
node, calculate the sum of all these ratios, and find the mesh that has the
maximum sum, i.e., the maximum activity. If there is more than one mesh
with this property, we use the one with the smallest time index. The average
activity of a node is the sum of all displacement vector lengths for all time
steps divided by the number of time steps. This means that we consider those
nodes in the mesh that expose a lot of activity, and try to represent the mesh
that contains these active nodes in the best possible way. The mesh decimation
algorithm is applied only to this one mesh. All other meshes are decimated
according to this guiding mesh, using the same node indices for the collapse
sequence.

Fig. 13. Preservation of temporal resolution, decimation guided by t2.

The index meshguide of the mesh that guides the decimation can be cal-
culated in linear time using the following equation:

meshguide = min{i ∈ N0|f(i) = max{f(i)|i ∈ N0}}

20 Joerg Meyer and Thomas Wischgoll

f(i) =

n−1
∑

k=0

∣

∣

∣

−→
d k,i

∣

∣

∣

n−1
∑

l=0

∣

∣

∣

−→
d l,i

∣

∣

∣

n number of nodes

−→
d k,i displacement vector k in mesh i

One drawback of this method is the search for the most active mesh nodes.
However, the search is performed in linear time, and the extra time for the
search is more than compensated for by the fact that all the other time steps
do not need to be decimated by a complex decimation algorithm. Instead, the
same list of collapse operations is applied to each time step, resulting in a fast
and efficient decimation of the entire data set. This method is scalable, as it
does not require loading of more than one time step into memory at one time.
It works for an arbitrarily large number of time steps. Also, the algorithm
is not restricted to the QTetFusion method. It should also work with other
decimation algorithms (see section 2).

5 Results from Ground Motion and Structural Response

Simulation

The simulation of the effect of an earthquake on a set of buildings was per-
formed using the OpenSees simulation software [22].

A map of the surface (figure 15) was used to place a group of buildings
along the projected fault line. Two different heights of buildings were used
(3 story and 16 story structures, figure 14) to simulate various building types
in an urban setting. A structural response simulation was calculated for this
scenario and then combined with the visualization of the ground motion. The
buildings were represented as boxes that resemble the frame structure that
was simulated using a SDOF model.

The scenario can be easily changed by selecting a different set of buildings
and different locations on the surface map. The placement of the buildings
and the selection of building types could be refined, based on real structural
inventory data.

The finite element ground motion simulation was performed on a Cray
T3E parallel computer at the Pittsburgh Supercomputer Center. A total of
128 processors took almost 24 hours to calculate and store an 8 second ve-
locity history of an approximately 12 million-node, three-dimensional grid.
The required amount of disk space for this problem was approximately 130
GB. Figure 15 shows a 2-D surface plot of the simulation in two coordinate
directions.

Figure 16a shows a 3-D rendering of the surface mesh combined with
the structural response simulation. The various intensities (colors) on the

Earthquake Visualization 21

Fig. 14. 3 story vs. 16 story building (story drift horizontally exaggerated).

(a) Fault parallel (b) Fault normal

Fig. 15. Velocity plot

buildings indicate the maximum story drift for each floor. Figure 16b shows
a hybrid rendering of ground motion and structural response. Textures have
been added for a more photorealistic representation of the buildings and the
environment.

It turns out that some buildings experience more stress than others, even
if they are in close proximity or in the same distance from the fault line as
their neighbors. The determining factors are building height, orientation of
the frame structure, and building mass.

Figure 17 shows a scenario in a CAVETM-like virtual environment (four
stereoscopic rear-projection screens with LC shutter glasses and electro-
magnetic head and hand tracking system) [18]. The user is fully immersed
in the visualization and gets both visual and audio feedback while the shock-
wave approaches and the buildings start to collapse [4].

22 Joerg Meyer and Thomas Wischgoll

(a) Ground motion and struc-
tural response simulation,

(b) with textures.

Fig. 16. a) Ground motion and structural response simulation, b) with textures.

Fig. 17. Virtual environment visualization.

6 Conclusions

We presented an integrated framework for domain- and field-error controlled
mesh decimation. The original tetrahedral fusion algorithm (TetFusion) was
extended by employing a planar quadric error metric (PQEM). The additional
computational overhead introduced by this error metric is justified by added
features, such as topology preservation, and a better decimation ratio. The
trade-off between time complexity of QTetFusion and the error in either the
vertex domain or the attribute field introduced as a result of tetrahedral fusion
needs to be investigated in more detail.

The atomic decimation operation employed (TetFuse) is symmetric, and
better suited for 3-D volumetric meshes than edge-collapse-based methods,
because it generates less topological inconsistencies (tetrahedra are usually

Earthquake Visualization 23

stretched away from their base plane). Remaining cases of negative volumes
are solved by an early rejection test for tetrahedral flipping. In QTetFuse,
the barycenter as the center of the tetrahedral collapse has been replaced
by a general fusion point that minimizes the PQEM. This improves mesh
consistency and reduces the overall error of the decimated mesh.

A control parameter can be used to provide a smooth and controlled tran-
sition from one step to the next. Therefore, the method can be employed to
implement a hierarchical level-of-detail set that can be used in multi-resolution
rendering algorithms allowing for a smooth transition between multiple levels
of detail (hierarchical refinement). One could also think of a view-dependent,
localized refinement for applications such as flight simulation.

Our future work includes offline compression of the datasets, as suggested
by Alliez et al. [1] and Isenburg et al. [15], and similar to the schemes suggested
by Gumhold et al. [12], Pajarola et al. [23], or Szymczak et al. [29]. This would
enable dynamic (on the fly) level-of-detail management for volume meshes
similar to those methods that currently exist for polygonal meshes [6].

In this chapter, we presented a general method for decimation of time-
varying tetrahedral meshes. The algorithm preserves the discrete time steps
in the temporal domain, which is critical for interactive navigation in both
directions in the time domain. It also represents an intuitive method for con-
sistent mesh generation across the temporal domain that produces topologi-
cally and structurally similar meshes for each pair of adjacent time steps. The
algorithm presented in this chapter is not restricted to a particular mesh dec-
imation technique. It is an efficient method that exploits and preserves mesh
consistency over time, and most importantly, is scalable.

7 Acknowledgements

This work was supported by the National Science Foundation under contract
6066047–0121989 and through the National Partnership for Advanced Com-
putational Infrastructure (NPACI) under contract 10195430 00120410. We
would like to acknowledge Gregory L. Fenves and Bozidar Stojadinovic, De-
partment of Civil and Environmental Engineering, University of California
at Berkeley, for providing us with the Structural Response Simulation and
the OpenSeesTM simulation software, Jacobo Bielak and Antonio Fernández,
Department of Civil and Environmental Engineering, Carnegie Mellon Uni-
versity, Pittsburgh, MA, for providing us with the ground motion simulation
data, and Prashant Chopra, Z-KAT, Hollywood, Florida, for the software im-
plementation. We would like to thank Peter Williams, Lawrence Livermore
National Laboratory, for the super phoenix dataset. We would also like to
thank Roger L. King and his colleagues at the Engineering Research Center
at Mississippi State University for their support of this research contract. Fi-
nally, we would like to thank Elke Moritz and the members of the Center of

24 Joerg Meyer and Thomas Wischgoll

Graphics, Visualization and Imaging Technology (GRAVITY) at the Univer-
sity of California, Irvine, for their help and cooperation.

References

1. P. Alliez and M. Desbrun. Progressive Compression for Lossless Transmission
of Triangle Meshes. In Proceedings of SIGGRAPH 2001, Los Angeles, CA,
Computer Graphics Proceedings, Annual Conference Series, pp. 198–205. ACM
SIGGRAPH, ACM Press, Aug. 2001.

2. P. Chopra and J. Meyer. Tetfusion: An Algorithm for Rapid Tetrahedral Mesh
Simplification. In Proceedings of IEEE Visualization 2002, Boston, MA, pp.
133–140. IEEE Computer Society, Oct. 2002.

3. P. Chopra and J. Meyer. Topology Sensitive Volume Mesh Simplification with
Planar Quadric Error Metrics. In IASTED International Conference on Visual-
ization, Imaging, and Image Processing (VIIP 2003), Benalmadena, Spain, pp.
908–913. IASTED, Sept. 2003.

4. P. Chopra, J. Meyer, and M. L. Stokes. Immersive Visualization of a Very
Large Scale Seismic Model. In Sketches and Applications of SIGGRAPH’01
(Los Angeles, California, August 2001), page 107. ACM SIGGRAPH, ACM
Press, Aug. 2001.

5. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simpli-
fication of Tetrahedral Meshes with Accurate Error Evaluation. In T. Ertl,
B. Hamann, and A. Varshney, editors, Proceedings of IEEE Visualization 2000,
Salt Lake City, Utah, pp. 85–92. IEEE Computer Society, Oct. 2000.

6. C. DeCoro and R. Pajarola. XFastMesh: Fast View-dependent Meshing from
External Memory. In Proceedings of IEEE Visualization 2002, Boston, MA, pp.
363–370. IEEE Computer Society, Oct. 2002.

7. T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology Preserving
Edge Contraction. Publications de l’Institut Mathematique (Beograd), 60(80),
pp. 23–45, 1999.

8. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge
University Press, 2001.

9. M. Garland. Multi-resolution Modeling: Survey & Future Opportunities. In
EUROGRAPHICS 1999, State of the Art Report (STAR) (Aire-la-Ville, CH,
1999), pp. 111–131. Eurographics Association, 1999.

10. M. Garland and P. Heckbert. Surface Simplification Using Quadric Error Met-
rics. In Proceedings of SIGGRAPH 1997, Los Angeles, CA, pp. 115–122. ACM
SIGGRAPH, ACM Press, 1997.

11. T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction
Based on Tetrahedral Bisection. In Proceedings 1999 Symposium on Volume
Visualization. IEEE Computer Society, 1999.

12. S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral Mesh Compression with the
Cut-Border Machine. In Proceedings of IEEE Visualization 1999, San Francisco,
CA, pp. 51–59. IEEE Computer Society, Oct. 1999.

13. I. Guskov, K. Vidimce, W. Sweldens, and P. Schroeder. Normal Meshes. In Pro-
ceedings of SIGGRAPH 2000, New Orleans, LA, pp. 95–102. ACM SIGGRAPH,
ACM Press, July 2000.

Earthquake Visualization 25

14. H. Hoppe. Progressive Meshes. In Proceedings of SIGGRAPH 1996, New Or-
leans, LA, pp. 99–108. ACM SIGGRAPH, ACM Press, Aug. 1996.

15. M. Isenburg and J. Snoeyink. Face Fixer: Compressing Polygon Meshes with
Properties. In Proceedings of SIGGRAPH 2000, New Orleans, LA, pp. 263–270.
ACM SIGGRAPH, ACM Press, July 2000.

16. A. D. Kalvin and R. H. Taylor. Superfaces: Polygonal Mesh Simplification with
Bounded Error. IEEE Computer Graphics and Applications, 16(3), pp. 64–77,
1996.

17. M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Mmeshes. Elec-
tronic Proceedings of the NSF/DoE Lake Tahoe Workshop for Scientific Visu-
alization, pp. 1–4, 2000.

18. J. Meyer and P. Chopra. Building Shaker: Earthquake Simulation in a CAVETM.
In Proceedings of IEEE Visualization 2001, San Diego, CA, page 3, Oct. 2001.

19. J. Meyer and P. Chopra. Strategies for Rendering Large-Scale Tetrahedral
Meshes for Earthquake Simulation. In SIAM/GD 2001, Sacramento, CA,
page 30, Nov. 2001.

20. B. Munz. The Earthquake Guide. University of California at San Diego.
http://help.sandiego.edu/help/info/Quake/ (accessed November 26, 2003).

21. M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolu-
tion scientific visualization. IEEE Transactions on Visualization and Computer
Graphics, 5(1), pp. 74–93, 1999.

22. OpenSees. Open System for Earthquake Engineering Simulation. Pacific
Earthquake Engineering Research Center, University of California at Berkeley.
http://opensees.berkeley.edu (accessed November 28, 2003).

23. R. Pajarola, J. Rossignac, and A. Szymczak. Implant Sprays: Compression of
Progressive Tetrahedral Mesh Connectivity. In Proceedings of IEEE Visualiza-
tion 1999, San Francisco, CA, pp. 299–305. IEEE Computer Society, 1999.

24. J. Popovic and H. Hoppe. Progressive Simplicial Complexes. In Proceedings
of SIGGRAPH 1997, Los Angeles, CA, pp. 217–224. ACM SIGGRAPH, ACM
Press, 1997.

25. K. J. Renze and J. H. Oliver. Generalized Unstructured Decimation. IEEE
Computer Graphics and Applications, 16(6), pp. 24–32, 1996.

26. W. J. Schroeder. A Topology Modifying Progressive Decimation Algorithm.
In Proceedings of IEEE Visualization 1997, Phoenix, AZ, pp. 205–212. IEEE
Computer Society, 1997.

27. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of Triangle
Meshes. Computer Graphics, 26(2), pp. 65–70, 1992.

28. O. G. Staadt and M. H. Gross. Progressive Tetrahedralizations. In Proceedings
of IEEE Visualization 1998, Research Triangle Park, NC, pp. 397–402. IEEE
Computer Society, Oct. 1998.

29. A. Szymczak and J. Rossignac. Grow Fold: Compression of Tetrahedral Meshes.
In Proceedings of the Fifth Symposium on Solid Modeling and Applications, Ann
Arbor, Michigan, pp. 54–64. ACM, ACM Press, June 1999.

30. I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of Tetrahedral Meshes.
In Proceedings of IEEE Visualization 1998, Research Triangle Park, NC, pp.
287–296. IEEE Computer Society, Oct. 1998.

31. I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of Tetrahedral Meshes with
Error Bounds. IEEE Transactions on Visualization and Computer Graphics,
5(3), pp. 224–237, 1999.

26 Joerg Meyer and Thomas Wischgoll

32. G. Turk. Re-tiling Polygonal Surfaces. Computer Graphics, 26(2), pp. 55–64,
1992.

33. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Framework
for Visualizing Regular Volume Data. In R. Yagel and H. Hagen, editors, Pro-
ceedings of IEEE Visualization 1997, pp. 135–142, Phoenix, AZ, 1997.

