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Abstract. The analysis and visualization of tensor fields is an advancing area in
scientific visualization. Topology-based methods that investigate the eigenvector
fields of second order tensor fields have gained increasing interest in recent years.
Most algorithms focus on features known from vector fields, such as saddle points
and attracting or repelling nodes. However, more complex features, such as closed
hyperstreamlines are usually neglected. In this article, a method for detecting closed
hyperstreamlines in tensor fields as a topological feature is presented. The method
is based on a special treatment of cases where a hyperstreamline reenters a cell
and prevents infinite cycling during hyperstreamline calculation. The algorithm
checks for possible exits of a loop of crossed edges and detects structurally stable
closed hyperstreamlines. These global features cannot be detected by conventional
topology and feature detection algorithms used for the visualization of second order
tensor fields.

1 Introduction

Many problems in natural science and engineering involve tensor fields. For
example, stresses, viscous stresses, rate-of-strain, and momentum flux density
are described as symmetric tensor fields. Due to the multivariate nature of
tensor fields, appropriate methods for visualization are required in order to
investigate the data. This, of course, includes the detection of special proper-
ties of a tensor field, for instance topological features, that can be emphasized
on in the visualization to reduce visual clutter.

The topological analysis of tensor fields as described by Hesselink et
al. [DH94] focuses on degenerate points and their topological meaning. A
special type of degenerate point, the trisector point, corresponds to saddle
points in vector fields from a topological point of view. Hyperstreamlines,
that follow the vectors in a particular, previously chosen eigenvector field,
lead to separatrices inside a 2-D tensor field. Similarly, a detailed analysis
of the degenerate points [HLL97] in a symmetric, second order 3-D tensor
field leads to hyperstreamlines [HD93] depicting parts of the topology of the
tensor field. To incorporate the two remaining eigenvector fields that are not
used for integrating the hyperstreamline, an ellipse spanned by those two
eigenvectors is used, resulting in a tube-shaped representation that follows
the main eigenvector field.

Obviously, integrating curves inside an eigenvector field plays an impor-
tant role in such a visualization. The qualitative nature of these curves can be
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studied with topological methods developed originally for dynamical systems.
Especially in the area of fluid mechanics, topological analysis and visualiza-
tion have been used with success [GLL91,HH91,Ken98,SHJK00].

Besides point-shaped singularities, other topological features exist in ten-
sor fields. Similar to closed streamlines in vector fields [WS01,WS02], closed
hyperstreamlines can be found in tensor fields. These integral curves within
an eigenvector field are closed, therefore forming a loop. Their importance
stems from the fact that quite often neighboring integral curves either tend
to bend toward the loop or originate from the loop (i. e. tend to move toward
the loop after reversing the direction of time). This is a well established re-
sult from dynamical systems theory [GH83,HS74]. Consequently, being able
to determine closed hyperstreamlines in tensor fields is an important addition
to tensor field topology.

Several publications have dealt with related topics in vector fields. Hepting
et al. [HDER95] study invariant tori in four-dimensional dynamical systems
by using suitable projections into three dimensions to enable detailed visual
analysis of the tori. Wegenkittel et al. [WLG97] present visualization tech-
niques for known features of dynamical systems. Bürkle et al. [BDJ+99] use a
numerical algorithm developed by some of the coauthors [DJ99] to visualize
the behavior of more complicated dynamical systems. In the literature on nu-
merical methods, one can find several algorithms for the calculation of closed
curves in dynamical systems [Jea80,vV87], but these algorithms are tailored
to dealing with smooth dynamical systems where a closed form solution is
given.

In most cases, visualization deals with piecewise linear, bilinear or tri-
linear data. In this paper, a suitable algorithm for this situation is presented
which can be integrated into a computational algorithm for standard hyper-
streamlines. While computing a hyperstreamline, the algorithm tracks the
visited cells and checks for repetition. Upon revisiting a cell, the algorithm
tests if the hyperstreamline stays in the same cell cycle indefinitely. For this
purpose, the boundary of the current cell cycle is investigated to determine
if the integral curve can cross this boundary.

The structure of the remainder of this paper is as follows. First, a short
description of the mathematical background is given. Subsequently, the al-
gorithm for detecting closed hyperstreamlines is discussed. Finally, results of
the algorithm are presented and concluding remarks are given.

2 Mathematical Background

This section provides the necessary theoretical background and the mathe-
matical terms used in the algorithm. The scope of this article is restricted
to steady, linearly interpolated three-dimensional second order tensor fields
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defined on a tetrahedral grid:

t : R
3 ⊃ D → Mat(3× 3, R), (x, y, z) 7→





t11 t12 t13
t21 t22 t23
t31 t32 t33



 =: (tij) .

D is assumed to be bounded. This is the case for almost every experimental
or simulated tensor field that has to be visualized. A tensor described as a
three-by-three matrix can be decomposed into two Matrices S = (sij) and
A = (aij) such that the equation T = A+S holds where sij = 1

2
(tij +tji) and

aij = 1

2
(tij − tji). Then S is called the symmetric part of the tensor T since

the equation sij = sji holds for every i and j, while A is the antisymmetric
part of the tensor T with aij = −aji. Since the antisymmetric part of a tensor
basically describes a rotation only, this paper focuses on symmetric, second
order tensors. For these, the eigenvalues exist and are real. The corresponding
eigenvectors form an orthogonal basis of R

3. This allows the computation of
hyperstreamlines by using one eigenvector field for calculating integral curves,
while the remaining two eigenvalues can be used to span an ellipse resulting
in a tube that follows the direction of the followed eigenvector field [HD93].
In addition, the ellipse can be scaled using the remaining eigenvalues.

According to the definition by Hesselink et al. [DH94], the topology of
a tensor field is the topology of its eigenvector fields. Consequently, critical
points known from vector fields, such as saddles, nodes, and foci, occur as
singularities in tensor fields as well. Due to the way hyperstreamlines are de-
fined, an additional kind of topological feature results from that definition. In
the case of two or more eigenvalues being identical, only two or one eigenvec-
tor(s) can be determined. As a consequence, hyperstreamlines end at such a
point, since there is no unique way to continue. Therefore, these locations are
usually referred to as degenerate points. Recent studies as described in chap-
ter 14 by Zheng et al. show that these points form lines instead of individual
points. Consequently, this type of singularity occurs more often compared to
vector field singularities. However, with respect to hyperstreamlines, degen-
erate points play only a minor role since a hyperstreamline that is terminated
by a degenerate point can no longer be a closed hyperstreamline.

Since hyperstreamlines follow one of the eigenvector fields, the behavior
of integral curves ha : R → Mat(3 × 3, R), τ 7→ ha(τ) can be described by
their properties ha(0) = a and ∂ha

∂τ
(τ) = t(ha(τ)). For a Lipschitz continuous

eigenvector field, one can prove the existence and uniqueness of integral curves
ha through any point a ∈ D, see [HS74,Lan95]. The actual computation
of integral curves is usually done by numerical algorithms, such as Euler
methods, Runge-Kutta-Fehlberg methods or Predictor/Corrector methods
[SB90].

The topology of a tensor field is defined as the topology of its eigen-
vector fields. Thus, the topological analysis considers asymptotic behavior
of integral curves in these different eigenvector fields. In order to be able



4 Thomas Wischgoll et al.

to clearly identify where integral curves are coming from and where they
are going, one can define two different sets describing the area covered by
the integral curve for approaching a positive or a negative infinite param-
eter value resulting in the α- and ω-limit set, respectively. The α-limit set
of an integral curve h is defined by {p ∈ R

3|∃(τn)∞n=0 ⊂ R, τn → − ∞,

limn → ∞ h(τn) → p}. The ω-limit set of an integral curve h is defined by
{p ∈ R

3|∃(τn)∞n=0 ⊂ R, τn → ∞, limn → ∞ h(τn) → p}. If the α- or
ω-limit set of an integral curve consists of only one point, this point is a
critical point or a point on the boundary ∂D. (It is usually assumed that the
integral curve stays at the boundary point indefinitely.)

The most common case of an α- or ω-limit set in an eigenvector field
containing more than one inner point of the domain is a closed hyperstream-
line [HS74]. This is an integral curve ha with the property that there is a
τ0 ∈ R with ha(τ + nτ0) = ha(τ) ∀n ∈ N. Consequently, for every closed
hyperstreamline there exist a hyperstreamline that converges to this closed
hyperstreamline when integrating in positive or in negative direction. This
fact will be exploited later in the algorithm for detecting this topological
feature.

Fig. 1. Example of a closed hyperstreamline in a 3D tensor field.

Figure 1 shows a typical example of a closed hyperstreamline in a three-
dimensional tensor field. Such a closed hyperstreamline is called structurally

stable if, after small changes in the tensor field, the closed hyperstreamline
remains.

3 Detection of Closed Hyperstreamlines

The concept of detecting closed hyperstreamlines in a three-dimensional sec-
ond order tensor field is similar to the three-dimensional vector case [WS02],
because a hyperstreamline follows one of the eigenvector fields. Once such a
closed hyperstreamline is detected in one of the eigenvector fields a tubular
structure can be built around the closed curve in a fashion similar to regular
hyperstreamlines.

Since the algorithm for detecting closed hyperstreamlines in symmetric,
second order 3-D tensor fields is very similar to the 3-D vector case it will
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be repeated here only briefly. Details can be found in [WS02]. Before the
algorithm itself is explained, a few notations need to be defined. We use the
term current hyperstreamline to describe the hyperstreamline currently under
testing for the loop condition.

To reduce computational cost, the hyperstreamline is first integrated using
a Runge-Kutta method of fourth order with an adaptive step size control. In
order to determine eigenvectors required for this step, the tensors are interpo-
lated tri-linearly inside the cells. Using the interpolated tensors, eigenvalues
and eigenvectors can then be calculated. This is known to be numerically
more stable. Otherwise, large numerical errors have the potential to modify
the topology of the tensor field in such a way that singularities do not form
lines any more. Further information about tensor interpolation is described
by Kindlmann et al. [KWH00].

During this integration step, every cell that is crossed by the current
hyperstreamline is stored in a list. If a hyperstreamline approaches a loop
it reenters the same cell. This results in a cell cycle consisting of a finite
sequence of neighboring cells c0, . . . , cn with c0 = cn crossed by the current
hyperstreamline.

Fig. 2. Backward integrated hyperstreamsurface.

This cell cycle identifies a region where it needs to be determined if the
current hyperstreamline can escape that cycle. To check this, every back-
ward integrated hyperstreamline starting at an arbitrary point on a face of
the boundary of the cell cycle has to be considered. Looking at the edges of
a face it can be seen directly that it is not sufficient to just integrate hyper-
streamlines backward which originate at the vertices of that edge. This is due
to the fact that individually started hyperstreamlines only cover a discrete
portion of the edge. Instead, a hyperstreamsurface has to be computed with
the edge in question as initial condition. Figure 2 shows an example where
a single cell and a backward integration is depicted. A hyperstreamsurface
is started at the rear left vertical edge and turns inside the cell towards
the rear lower right corner of the cell. The parts of the hyperstreamsurface
that are outside the cell are drawn as dashed lines. The two edges of the
hyperstreamsurface which are identical with a backward integrated hyper-
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streamline started at the vertices of the rear left edge of the cell leave the cell
at the lower and rear face, respectively. However, a hyperstreamline started
at the center of the rear left edge of the cell (drawn in red) leaves the cell
at the right face. If the cell cycle continuous at the right face the backward
integration would be considered as leaving the cell if only the backward inte-
grated hyperstreamlines starting at the vertices of an edge would have been
considered. As a consequence, we have to find another definition for exits as
in the two-dimensional vector case [WS01]. Thus, potential exit edges, which
are the starting points of the backward integration step, are defined as the
edges on the boundary of the cell cycle. In analogy to the two-dimensional
case, curves on a boundary face of a cell contained in the cell cycle where the
eigenvector field is tangential to the face is identified as a potential exit edge

as well.

Due to the nature of the interpolation inside the tetrahedral grid, it can
be shown that there will be at most a two-dimensional curve on the face
of a tetrahedron of that grid where the eigenvector field is tangential to
the face, the whole face is tangential to the eigenvector field, or there is no
tangential area at all. An isolated point on the face where the eigenvector
field is tangential to the face cannot occur and do not need to be considered
as a potential exit.

The potential exit edges as previously defined then serve as initial condi-
tions for the backward integration step. Hyperstreamlines are computed orig-
inating at the potential exit edges. These hyperstreamsurfaces are then called
backward integrated hyperstreamsurface. In case part of the hyperstreamline
leaves the cell cycle the current hyperstreamline can leave at the cell cy-
cle at that location and there is no closed hyperstreamline present in the
current cell cycle. Hence, this exit edge is referred to as a real exit edge.
It is worthwhile noting that the backward integrating step is insensitive to
degenerate points. On encounter of a degenerate point, a hyperstreamsur-
face may separate into two parts, but can still be computed. For the back-
ward integrated hyperstreamsurface the streamsurface algorithm introduced
by Hultquist [Hul92] is used. Further details about the described methodology
can be found in [WS02] due to its similarity to the vector case.

Applying this motivation to symmetric, second order 3-D tensor fields,
an algorithm for detecting closed hyperstreamlines can be described. First,
a hyperstreamline is integrated using a standard integration method. During
that process the cells covered by the current hyperstreamline are traced to
check if a cell cycle is reached. Then, all potential exit edges are identified
by going backward through the crossed cells. As a final step, all exit edges
are validated by integrating a hyperstreamsurface backward from every po-
tential exit edge through the whole cell cycle. If there is no real exit edge,
meaning that no backward integrated hyperstreamline left the cell cycle, the
current hyperstreamline cannot leave the cell cycle. Consequently, there ex-
ists a closed hyperstreamline within the cell cycle on condition that there is
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no singularity contained in the cell cycle. On the other hand, if a real exit
edge exists, then there is no closed hyperstreamline present in the current
cell cycle. Consequently, the criterion serves as both a necessary as well as a
sufficient condition. The proof for this algorithm is similar to the vector case
and can be found in [WS02].

4 Results

To test the implementation, a synthetic data set was created which includes
one closed hyperstreamline in the minor eigenvector field. To compute this
data set, a two-dimensional vector field which contains two sinks and is sym-
metrical with respect to the y-axis is used as a starting point. In addition,
all vectors residing at the y-axis are zero in this vector field. By rotating
this two-dimensional vector field about the y-axis, a three-dimensional flow
is created. To convert each vector v in this vector field into a tensor, basic
linear algebra methods are used. First, two vectors v1 and v2 are determined
in such a way that these two vectors in combination with the one from the
vector field form an orthonormal basis of R

3. Defining a matrix T = (v, v1, v2)
yields to a tensor t = T · E · T−1, where E is a matrix defined as

E =





1 0 0
0 2 0
0 0 3



 .

Determining the minor eigenvector in a tensor field that was created in
such a way, results in exactly the same vector that was plugged in initially.
Consequently, the tensor field contains a single closed minor hyperstreamline.
Figure 3 shows the hyperstreamline that was detected by the algorithm. The
wavy appearance of the closed hyperstreamline is due to the way this data set
was generated; the location of the closed hyperstreamline is determined very
accurately by the algorithm. The hyperstreamline is drawn only as the center
line without considering the medium and major eigenvectors. In addition, a
hyperstreamline which was computed by a regular hyperstreamline algorithm

Fig. 3. Closed hyperstreamline (minor eigenvector field) in combination with a
regular hyperstreamline.
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Fig. 4. Closed hyperstreamline including hyperstreamsurfaces exposing the sur-
rounding tensor field (minor eigenvector field).

was started in the vicinity of the closed hyperstreamline. The segments of
this hyperstreamline are colored according to the minor eigenvalue. Due to
the attracting nature of this closed hyperstreamline, the regularly computed
hyperstreamline approaches it and eventually merges with the first as can be
seen in the figure.

Figure 4 shows the same closed hyperstreamline with two hyperstreamsur-
faces. The hyperstreamsurfaces – just like the hyperstreamline – are attracted
by this closed hyperstreamline. The hyperstreamsurface becomes smaller and
smaller while it spirals around the closed hyperstreamline. After a few turns
around the closed hyperstreamline, the ellipses are only slightly wider than
the closed hyperstreamline itself, finally causing the hyperstreamsurface to
completely merge with the hyperstreamline. A rather arbitrary color scheme
is used for the hyperstreamsurfaces to enhance the three-dimensional impres-
sion.

To apply the algorithm to a more common data set, a single point load
data set was used. Here, a force is applied to an infinite half space. The
stress-strain tensor field is determined to describe the pressure inside that
infinite half space. Figure 5 shows the result of the algorithm. Two major
hyperstreamlines were computed, starting at the top of the figure and ending
at the lower left corner. The force acting on the infinite half space is attached
to the center of the funnel-shaped end of the larger hyperstreamline in the

Fig. 5. Closed hyperstreamlines in single point load data set.
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figure. Several closed hyperstreamlines can be found in the minor eigenvector
field of this data set. In fact, there is a complete surface totally covered by
closed hyperstreamlines. Figure 5 shows just two of these hyperstreamlines to
avoid visual clutter. Due to the interpolation used for computing the tensors
in the data set, the closed hyperstreamlines do not appear as perfect circles
as would be expected from the simulation. Similar to the previous example,
the segments of all hyperstreamlines are colored according to the eigenvalue
whose eigenvector is used to follow the hyperstreamline.

5 Conclusion

A method for detecting closed hyperstreamlines in symmetric, second order
tensor fields was presented. It was found that most methods that have been
established for vector fields can be applied to tensor fields as well. As can be
seen in the first example of section 4, closed hyperstreamlines can have an
attracting property and therefore form a topological feature. Consequently,
this feature, which is missing in topological analysis algorithms, was added.
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